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PART I

1.0 INTRODUCTION

Since 4 April 1972 the NASA-ERTS Geography Remote Sensing Project

at the University of Tennessee has been conducting research investigations

on the detection, monitoring, and delimitation of landscape change elements

in Tennessee. Paramount to the investigation has been the testing and

analysis of satellite imagery from the National Aeronautics and Space

Administration's earth orbiting Earth Resources Technology Satellite

(ERTS-I). Without the capabilities of ERTS in providing a view of the

earth from a remote 560 mile altitude for synoptic investigations and

the cyclic, sequential temporal parameters of the system on an 18-day

cycle for change detection and monitoring, the study could not have

been adequately accomplished.

1.1 OBJECTIVES

The primary objective of the proposed and ultimately accomplished

research has been to analyze the ERTS-I data for the detection and

monitoring of landscape change within the study area. Such landscape

change elements as forest alterations, agricultural cycles of landuse,

urban and suburban development, strip mining effects, and highway construc-

tion, have been of primary importance to the investigation and as such

have formed the basis of the research effort.

The ultimate objective of the investigation, however, has been

the identification, delimitation, and mapping of dynamic photomorphic

1.
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regions of landscape change. Specific objectives within this category

include the monitoring and mapping of: (1) areas of forest alteration/

newly cleared land, (2) areas which exhibit dynamic agricultural landscape

change during the seasonal annual cycle, (3) patterns of constructive

non-agricultural change such as roads, new settlement, new shopping

center construction, and (4) specific sites of the destructive alteration

of physical and cultural landscapes such as natural and man-made hazards

of flood, fire, and erosion.

The objectives as stated here represent the nature of the proposed

research objectives from the initial proposal of 14 April 1971 and

the accomplished objectives and research results between 4 April 1972

and November 1973.

1.2 STUDY AREA

Because of the diversity of terrain features, landuse, and seasonal

variation, eastern Tennessee and portions of western North Carolina were

initially chosen to form the study area.

The investigation has focused on the East Tennessee Test Site, a

20,000 square mile region in which two smaller test sites are located

(Figure 1). The Knoxville Test Site, an 11 x 21 mile area which encompasses

the city of Knoxville and the western portion of west Knox County, has

been investigated for landscape change associated with urban-suburban

growth. A second test site of 17 x 10 miles on the Cumberland Plateau

has been monitored for forest alterations and landform disturbances

associated with the surface strip mining of coal.
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Figure 1. Map of the East Tennessee Test Site.
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In addition to the primary test site in eastern Tennessee, other

adjacent and larger areas have been analyzed for testing the change

detection, synoptic, and mapping capabilities of the ERTS-I data.

Sand Mountain, Alabama, south of Chattanooga, Tennessee, was analyzed

for the detection of agricultural plowing practices. The Huntsville-

Florence Alabama area was investigated for agricultural landscape change

from ERTS-I imagery. In western Tennessee, the seasonal, short-lived

phenomenon of spring (1973) flooding was analyzed for the Mississippi

River floods between Cairo, Illinois and Memphis, Tennessee. Furthermore,

statewide mapping efforts were established for mapping the forest cover

of Tennessee and for mapping agricultural regions for the states of

Tennessee and Kentucky.

1.3 STATEMENT OF WORK RESULTS BY PHASES

1.31 PHASE I - APRIL 4, 1972 to OCTOBER 1972

In the original ERTS-A proposal dated 14 April 1971, three phases

of research were proposed. First, was a prelaunch period of collecting

available aircraft imagery for data and map control and for comparative

interpretations with the ERTS imagery. 2 This was accomplished by the

acquisition of NASA RB-57 high altitude imagery flown on April 18, 1972.

Although the high flight mission had been conducted for another investi-

gation for the Tennessee Valley Authority, we were fortunate in obtaining

copies of the imagery from the Johnson Space Center of Houston. Other

data based information was generated through the use of low altitude

(10,000') aircraft missions over the Knoxville Test Site.
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Map resources were obtained from T.V.A. and the Tennessee State Highway

Department during Phase I to further the controlled data base. Other

preparations during Phase I included the acquisition of research inter-

pretation equipment and office supplies and equipment for the project

laboratory. Initially the lab was located in Buehler Hall of the

Chemistry Department, however in October 1972, the project was moved to

a three-room complex in South Stadium Hall under the football stadium.

1.32 PHASE II - NOVEMBER 1972 to JANUARY 16, 1973

The Phase II - "First Look" period of the project involved the

initial analysis of imagery from ERTS-I following the successful launch

of the satellite on 23 July 1972. Because of delays in receiving the

first ERTS imagery, Phase II - "First Look" did not begin until mid-

October, 1972. The first images received presented a disappointing view

of a cloud and haze covered East Tennessee Test Site for August 22, 1972.

Like most investigators, we did not know what to expect to see

from ERTS. We were initially expecting (1) greater clarity - of course

not present in the initial stagnant air - haze and cloud covered scene,

and (2) immediate interpretable results from a familiar landscape. The

unfamiliar view of eastern Tennessee from an altitude of 560 miles was

initially baffling. In one of our first looks at the imagery at the

browse facility at Goddard Space Flight Center, we overran our test site

two times while rolling out the imagery on the 70 mm film rolls. We

found that the only possible recourse was to key in on the patterns of

known T.V.A. lakes and streams best shown on band 7 of the M.S.S. (multi-

spectral scanner). These initial first look blunders were not necessarily
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the result of naivete, because we were qualified image interpreters

who were more than casually familiar with the landscapes of the study

area. I am convinced, however, that our mental maps of the area were

initially at a scale of no greater than 1:250,000 and we required a

period of approximately five minutes to adjust to the new synoptic

perspective. Such first look experiences were felt by other investigators

and are continually being experienced by professionals and laymen who

see unfamiliar views of familiar areas for the first time from the

synoptic perspective provided by ERTS.

Fortunately, Phase II was later marked by improved imagery with

clearer, cloud-free views of the East Tennessee Test Site from 15 October

1972. The October imagery became the single most important and useable

set of ERTS-I data until the reception of other useful sets of imagery

dated 19 February, 14 April, 1 May, and 12 July, 1973.

Evaluations of spectral parameters of the imagery and data products

from N.D.P.F. (NASA Data Processing Facility) were made during Phase II.

Of the four bands from the N.S.S. (multi-spectral scanner), two bands

were deemed to be infinitely better than the others. Band 5, in the

.6 to .7 micron range, provided unquestionably the most useful spectral

range for purposes,of comparing and contrasting landscape signatures.

The light-toned signatures of strip mines, highway construction, plowed

fields, suburban developments, and shopping center sites were best

identified on band 5 because of the contrast between light tones and

dark vegetated tones as seen through the spectral window of band 5.

Band 7 (.8 to 1.1 microns), though not as widely used as band 5, proved
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to be significant for the detection and mapping of water surfaces.

Not only permanent water bodies were best identified on this band,

but also temporary water surfaces such as wet soils and forests following

periods of heavy precipitation were easily detected (see Fig.29). The

analysis of the Mississippi floods later in Phase III was totally

dependent on the capabilities of band 7 in enhancing water surfaces

within the near infrared portion of the electromagnetic spectrum.

Although band 4 (.5 to .6 microns) was essential to the production

of color composite products, as an interpreting unit individually it

was of far less use to the project. Band 6 (.7 to .8 microns) was much

more similar to band 7 than band 4was to band 5. Band 6, however,

did not provide the same clarity and haze penetration that band 7 did

and therefore 6 was of lesser value and use to the interpretive portions

of our Phases II and III.

Other product evaluations performed during Phase II and later in

Phase III were focused on the bulk vs. precision and the color vs.

black and white parameters of the imagery. Throughout the two phases,

bulk products far surpassed the precision products in terms of resolution,

optical clarity, density, and even mapping capability. The precision

products are definitely more accurate orthographically than the bulk

products. However, from an interpretation standpoint in terms of object

recognition, and identification the bulk products were far superior to

the precision. One can argue the orthographic question and map accuracy

standards in favor of the precision products, but if one does not

identify a landscape element as easily on the precision product, then

how can one map it? Favoring a compromise, our results show that unless
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national map accuracy standards are totally essential to an investigation,

the precision data products are not particularly needed. Our procedure

has been to conduct all of our initial interpretation experiment and

mapping experiments on the bulk imagery and then to compare this with

selected portions of the precision imagery.

Experiments conducted during Phase II included resolution tests,

comparisons with ERTS-I imagery with high altitude RB 57 imagery and

low altitude aircraft imagery, and microdensitometric and computer map

experiments. Tests for resolution were conducted on the October 15, 1972

imagery with specific application given to strip mine detection. Through

the use of a 8X magnifying comparator, strip mines of 250' to 410' width

could be detected on the ERTS imagery. Other resolution tests were applied

to urban features. Unfortunately, the compact nature of urban core areas

and their low contrast reflectance did not allow for adequate or even

accurate measurements. The best features for resolution testing and

object identification on M.S.S. band 5 were linear features in high

contrast reflectance situations. Such features-as highway construction

sites which reflected bright, bare earth surfaces against dark vegetated

backgrounds, could be measured at 300' - 420'. Likewise, strip mines

which reflected from bright sandstone surfaces were strongly contrasted

against dark coniferous forests. On M.S.S. band 7, the detection of water

features produced remarkable results for measurements of stream widths,

ponds, and small lakes. Furthermore, even water filled depressions within

strip mines could be detected, identified, and measured to dimensions

as small as 200 feet.
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A comparative analysis of ERTS imagery and high altitude RB-57

imagery was made during Phase II. The RB-57 imagery flown from 60,000'

on April 18, 1972 provided an extremely useful control data base at

a scale of 1:120,000 for mapping landscape change parameters. (For

further details of this procedure and results, see pages 59-65.) Of

particular importance was the comparative analysis of strip mine scars

on the Cumberland Plateau using ERTS-I and RB-57 imagery. Although

specific internal details of themines could only be determined from

the RB-57 imagery, the ERTS data were important to the detection and

identification of strip mine scars in general, and their boundaries

and growth patterns specifically. Thus, internal characteristics within

strip mines could not be clearly detected from ERTS but their boundaries

could.

Because of the usefulness of this combination of imagery as a part

of a multi-scale, multi-stage experiment of the investigation, such

combinations of imagery were used in the operational portions of Phase III.

Comparative analyses were also made between ERTS-I, RB-57, and low

altitude (7,000') imagery. Details of shopping centers, highway construc-

tion sites, and suburban development areas were clearly determined from

the low altitude imagery for ground truth data.

Essentially the multistage, multiscale comparative experiments

proved to be useful in the following ways: (1) the low altitude imagery

was beneficial for ground truth data compared to ERTS; (2) the RB-57

imagery provided a mapping base and data control base as compared to ERTS;

and (3) the ERTS imagery, as the paramount data product with temporal

parameters and regionwide scales, was the primary platform to which the

other forms and scales of imagery were compared.
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Microdensitometric and computer analytical experiments were begun

during Phase II and continued through Phase III. Using a Tech/Ops

scandig 25 microdensitometer through the auspices of the Electrical

Engineering Department to scan the ERTS imagery, we were initially able

to digitize the ERTS-I image data into a computer map product. Although

the map products were coarse in visual display, they could be altered

in scale from the original 1:3,312,000 from the 70 mm film clips into

computer maps of 1:33,000. Difficulties which plagued the experiments

were centered on equipment breakdowns and the multi-step approach to

digitizing pre-existing digital data. Instead of converting ERTS-I

digital tape data directly into computer map output in what would be

the simplest, most direct way, we were digitizing imagery which had

been previously produced from a digital tape at NASA's Data Processing

Facility at Goddard. Although we did not (at U.T.) reach successful

conclusions with the experiment, we feel that it has the potential

for reaching significant conclusions. Further details of this experiment

are covered in thereport on pages 46-52.

1.33 PHASE III - JANUARY 16, 1973 - NOVEMBER 23, 1973

Phase III research procedures were principally based on those

established in Phase II. The multiscale-multistage procedure using

imagery from ERTS, RB-57 high flights, low altitude missions, and

ground truth fieldwork was of primary importance in the mapping of

strip mining changes and urban landscape changes. The microdensity

experiments were continued into Phase III but principally for experimental

and not operational purposes.



A new procedure utilized in Phase III was based on experiments

conducted on a VP-8 Image Analyzer, a microdensity and image color

enhancer maintained by the Electrical Engineering Department under the

direction of Dr. Robert Bodenheimer (see pages 53-56 ).

A negative photographic technique in image enhancement was begun

early in Phase III and continued to be used effectively throughout the

research period. Although details of the technique are covered on

pages 30-40 in this report, the principle of the technique involved

the production of negative photographic prints from color and black and

white positive transparencies. Originally designed as an expedient

photo printing process by this investigator in 1971, the negative print

technique was applied to the ERTS imagery for image enhancement. With

the negative print technique applied to band 5, cultural landscapes in

terms of urban and suburban areas, shopping centers, highway construction

sites, strip mines, and agricultural areas were enhanced in dark tones

against a light background. On band 7 negative prints, water and

topographic surfaces were enhanced in light tones and light shaded

enhancements on dark surfaces displayed as tone reversals in the

negative prints (see Figure 4).

The mapping of photomorphic regions and examples of landscape change

occupied the majority of the Phase III activities. Three thematic mapping

projects were accomplished: (1) a map of the forest cover in Tennessee

mapped from ERTS-I imagery; (2) maps of agricultural landscape changes

and agricultural regions in Tennessee and Kentucky based on plowed ground

and cleared land signatures; (3) a two part series of maps on strip mining
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changes; and (4) a map of urban-suburban growth changes in Knoxville,

Tennessee.

In the following chapters, all techniques and results are covered

systematically and the mapping of landscape changes are covered topically

for the remainder of the report. Note in section 1.4 the results of

the project as they are presented in the project calendar of research

and presentations.

1.4 PROJECT CALENDAR-OF RESEARCH AND PRESENTATIONS

April 14, 1971 - Submission of ERTS-A proposal to NASA. "Geographic
Applications of ERTS-A Imagery."

April 4, 1972- NASA-ERTS Geography Remote Sensing Project. Funding

and research initiated.

May, June, 1972 - Acquisition of research and office equipment.

June 22, 1972 - LowAltitude Aircraft Overflight - Knoxville Test Site -
8000'

June 23, 1972 - Low Altitude Aircraft Overflight - Knoxville Test Site -
8000'

June 27, 1972 - Type I Report, Geographic Applications of ERTS-I Imagery.
NASA #CR-127550. N.T.I.S. #E72-10008. National Technical
Information Service, Springfield, Virginia, 4 pages.

July 6, 1972 - Low Altitude Aircraft Overflight - Knoxville Test Site -
8000'

August 14, 1972 - Low Altitude Aircraft Overflight - Knoxville Test Site -
8000'

August 14, 1972 - Type I Report, Geographic Applications of ERTS-I
Imagery to Rural Landscape Change. NASA #CR-128097.
NTIS #E72-10082. National Technical Information
Service, Springfield, Virginia. 3 pages.

September 28-30, 1972 - Attendance at the ERTS Investigators Seminar -
"Preliminary Findings from the Analysis of ERTS
Observations" - Goddard Space Flight Center,
Greenbelt, Maryland.
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October 3-7, 1972 - Attendance at the 8th Symposium on Remote Sensing of
Environment. University of Michigan, Ann Arbor, Michigan.

November 20, 1972 - Presentation of "Remote Sensing of Landscape Change:
A Case for the Earth Resources Technology Program."
27th Annual Meeting of the Southeastern Division,
Association of American Geographers, Miami, Florida.

November 19-21, 1972 - Publication of "Remote Sensing of Landscape Change:
A Case for the Earth Resources Technology Program,"
Papers in Methodological, Cultural, and Physical
Geography, Vol. 2, pp. 89-91, Southeastern Division
of the Association of American Geographers.

November 27, 1972 - with James R. O'Malley, Publication of Regional
Landscape Change: A Case for ERTS-I. NASA #CR-129227.
NTIS #E72-10265. National Technical Information Service,
Springfield, Virginia. 10 pages.

December, 1972 - Type II Report. Geographic Applications of ERTS-A
Imagery to Rural Landscape Change. NASA #CR-129668.
NTIS #E72-10355. National Technical Information Service,
Springfield, Virginia. 34 pages.

December, 1972 - Abstract publication of "Geographic Applications of
ERTS-I Imagery to Rural Landscape Change." NASA #CR-128371.
NTIS #E72-10177. National Technical Information Service,
Springfield, Virginia. 4 pages.

December 22, 1972 - Abstract publication of "Geographic Applications of
the Earth Resources Technology Satellite (ERTS-I) to
Landscape Change." NASA #CR-129564, NTIS #E72-10315.
National Technical Information Service, Springfield,
Virginia. 2 pages.

January, 1973 - Image enhancement techniques in negative printing established.

January 1, 1973 - Publication of "Geographic Applications of ERTS-I
Imagery to Rural Landscape Change 162-III," I.E.E.E.
Transactions on Geoscience Electronics, Vol. GE-11,
No. 1, page 26.

January 15, 1973 - Submission of ERTS-B Proposal to NASA. "Geographic

Applications of ERTS-B Imagery to Landscape Change."

January 16, 1973 - Data Analysis Plan for Phase III Research Approved.

January 30, 1973 - with James R. O'Malley, Technical data for NASA from
Geographic Applications of ERTS-I Imagery to Rural
Landscape Change in Eastern Tennessee. NASA #CR-130319,
NTIS #E73-10040. National Technical Information Service,
Springfield, Virginia. 23 pages.
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February, 1973 - Microdensitometric and computer analysis experiments.

March 7, 1973 - Presentation of "Geographic Applications of ERTS-I
Data to Landscape Change." At the Symposium on Significant
Results Obtained from the Earth Resources Technology
Satellite - I. NASA-Goddard Space Flight Center.
Sheraton Hotel, New Carrollton, Maryland.

March 5-9, 1973 - Publication of "Geographic Applications of ERTS-I
Data to Landscape Change." Symposium on Significant
Results Obtained from the Earth Resources Technology
Satellite - I. Vol. I, Section B, pp. 955-963.
NASA Special Publication #327. March 5-9, 1973.

March 27, 1973 - with James R. O'Malley - Presentation of "Geographic
Applications of ERTS-I Imagery to Rural Landscape Change
in Eastern Tennessee," at the Second Annual Remote
Sensing of Earth Resources Conference, University of
Tennessee Space Institute, Tullahoma, Tennessee.

March 27, 1973 - With James R. O'Malley - "Geographic Applications of
ERTS-I Imagery to Rural Landscape Change in Eastern
Tennessee." Remote Sensing of Earth Resources, Vol. II.
F. Shahrokhi, Editor. Selected papers.from the 2nd
Annual Remote Sensing of Earth Resources Conference,
University of .Tennessee Space Institute, Tullahoma,
Tennessee, pp. 1005-1011.

April 13, 1973 - Low Altitude Overflight - Cumberland Plateau Test Site -
7000'.

April 19, 1973 - Presentation of "Geographic Applications of ERTS-I Data
to Landscape Change." In the Special Session - The
Uses of ERTS Data in Geography. 69th Annual Meeting of
the Association of American Geographers, Atlanta, Georgia.

April 23, 1973 - Presentation of "The Earth Resources Technology Satellite
(ERTS-I)," at the Chattanooga Engineers' Club, Chattanooga,
Tennessee.

April 28, 1973 - Presentation of "Geographic Applications of the Earth
Resources Technology Satellite (ERTS-I) to Landscape
Change," at the 1st Pan.American Symposium on Remote
Sensing, Panama City, Republic of Panama. To be
published in the Proceedings of the 1st Pan American
Symposium on Remote Sensing.

May 4, 1973 - Low Altitude Aircraft Overflight - Mississippi River
Flooding, Memphis, Tennessee.
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May 6, 1973 - Ground Truth Fieldwork - Great Smoky Mountains - to
investigate phenological (seasonal) changes in hardwood
forests.

May 12, 1973 - Ground Truth Fieldwork - Knox, Union, Jefferson Counties -
to examine zinc mine talings (observed as unidentified
white surfaces on the ERTS imagery).

May 12, 1973 - Ground Truth Fieldwork - Campbell County, Tennessee -
to investigate strip mine activities.

June 30, 1973 - Publication of Geographic Analysis of Landscape Change
from ERTS-I Imagery. Type II Report. NASA #CR-132170,
NTIS #E73-10661, National Technical Information Service,
Springfield, Virginia.

July 20, 1973 - Submitted with James T. Johnson, Map, "Strip Mining
Landscape Change," to be published in a book by the
NASA-Goddard Space Flight Center, Greenbelt, Maryland.

July 31, 1973 - Publication of Applications of ERTS-I Data to Landscape
Change in Eastern Tennessee. NASA #CR-133422, NTIS #E73-

10843, National Technical Information Service, Springfield,
Virginia.

August, 1973 - Submitted with Earl J. Tullos. "Map of Forest Cover in
Tennessee as Derived from ERTS-I Imagery." To be published
in a book by NASA-Goddard Space Flight Center, Greeribelt,
Maryland.

August, 1973 - Ground truth fieldwork on highway construction sites in
eastern Tennessee.

October 13-14, 1973 - Ground truth fieldwork - Cumberland Plateau,
Tennessee. To identify deforested areas in Bledsoe
and Van Buren Counties.

October 15-25, 1973 - Image enhancement procedures made operational on
Image Analyzer VP-8 system.

October 29, 1973 - Presentation of Significant Results of the NASA-ERTS
Geography Remote Sensing Project to the Discipline Panel
on Landuse. Building 8, Goddard Space Flight Center,
Greenbelt, Maryland.

Oct. 29 - Nov. 1, 1973 - Publication of "Applications of ERTS-I Data to
Landscape Change in Eastern Tennessee," Proceedings
of the Symposium on the Management and Utilization
of Remote Sensing Data. Falls Church, Virginia:
American Society of Photogrammetry, pages 598-609.
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November 1, 1973 - Presentation of "Applications of ERTS-I Data to
Landscape Change in Eastern Tennessee." Symposium
on. the Management and Utilization of Remote Sensing

Data. U.S. Geological Survey and American Society
of Photogrammetry. Sioux Falls, South Dakota.

November, 1973 - Image enhancement experiments with color negative

printing.

November 24, 1973 - Phase III terminated.

December 1973 - June 1974 - Final Report.



PART II. TECHNIQUES DEVELOPMENT AND UTILIZATION

2.0 INTRODUCTION

The development of research techniques and their utilization

formed a significant part of the efforts of the NASA-ERTS Geography

Remote Sensing Project. The methods and procedures which were tested

and used by the project personnel involved time-honored techniques such

as ground truth observations and low altitude overflights as well as

relatively unique techniques involving electronic and computer analysis

of the imagery.

Because of the unique scale of data coming from ERTS, a multi-stage,

multi-scale procedure was initiated for data collection and analysis.

Proceeding from ERTS imagery to RB-57 high flight imagery, to low altitude

aircraft overflights, to ground truth observations, techniques were

developed and utilized to derive data from each of the lower stages to

be compared with ERTS data.

A second techniques development package was the photographic technique

of producing black and white and color negative prints from positive

products from ERTS. A third techniques procedure was the use of micro-

density scanning equipment to convert point information into computer

compatible products and computer maps.

Finally, an image analyzer system (VP-8) was used to convert ERTS

imagery into color enhancements for real time analysis, density readouts,

and for enhanced color reproduction.

17
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2.1 MULTI SCALE - MULTI STAGE PROCEDURES OF DATA ACQUISITION AND INTERPRETATION

The multi-stage sampling procedure involved the generation and analysis

of (1) surface ground truth imagery; (2) low altitude aircraft imagery

from 7,000' to 10,000'; (3) high altitude RB-57 aircraft imagery from

60,000'; and (4) the ERTS-I imagery from an altitude of 560 miles. Two

specific sites were investigated for the application of the procedure.

One site, located on the Cumberland Plateau west of Knoxville, was monitored

for strip mine landscape changes. The other site was centered on Knoxville

and the primary suburban growth areas of West Knox County.

Before examining the details of our approach, several arrangements of

the multi-scale approach need to be considered (Figure 2). One could have

followed an inductive approach - leading from the specific to the general -

to produce a quilt-like mosaic of parts which would have hopefully but

laboriously led to a general conclusion. The inductive approach as

stated for the project stages leads from ground truth investigations

through the various aircraft scales to the synoptic ERTS-I view. This

approach is far from being reasonable and is considered in this investigation

only in regard to its philosophy. A second approach, the deductive approach,

operates from the general to the specific line of reasoning. As applied

to this investigation, the approach leads from the ERTS-I imagery down in

a step-wise progression through the aircraft data and finally to specific

ground samples. The deductive approach is far more useful in terms of

scale, the choices of detail, and sampling procedure. Other investigators

using this approach have found it philosophically and operationally successful.3

Finally the approach which this investigator utilized is based on a two-way

procedure which begins near the center of the multi-scale matrix.
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ERTS band 5
negative print
altitude: 560 miles

9!
RB-57 High Flight

P negative print
r altitude: 60,000'

92

Low Altitude Aircraft

negative print
altitude: 7000'

Ground Truth
positive print
distance: 500'

Figure 2. Multi-stage, multi-scale imagery showing variations
in scale and directions of procedure in analysis.
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Beginning with the high altitude RB-57 imagery at 60,000' altitude and at

a map scale of 1:120,000, we proceed up to the smaller map scale of ERTS

(1:1 million) for comparison. Both platforms offer a regional synoptic

view, and with ERTS data being used as the primary data source under

investigation, it seems reasonable to compare it with the data scale

nearest to it. From this first step, we proceed down to the larger scale

data in the low altitude aircraft imagery which in reality is a form of

ground truth data. The final step is to the genuine ground truth samples

selected on the basis that information gathered from this stage could not

have been obtained from any of the other stages.

For an understanding of the components of the multi-scale - multi-stage

experiments, an examination of each of the remote sensing platforms, sensors,

and analysis equipment is necessary. The following data sheets offer in

a tabular form the significant elements of each stage of data collection,

analysis, and cost benefits.

2.12 STAGE 1 - ERTS-I

1. Altitude - 560 miles

2. Imagery Scale - 1:998,136 to 1 million for 9 1/2"x 9 1/2" imagery

1:3,312,000 for 70 mm imagery

3. Image Area - 13,225 square miles

4. Linear distance per frame - 115 miles

5. Sensors: multispectral scanner (MSS) Return bean vidicon (RBV)

6. Film/Product: Bulk and Precision Black and White 70 mm and 9 1/2" x
9 1/2" transparencies

Bulk and Precision Color Composites 70 mm and 9 1/2"
x 9 1/2" transparencies

*Not operating
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7. Film Media: Negative and Positive black and white transparencies

Color composites (Bands 4, 5, 7) transparencies

8. Filters:

9. Spectral bands: Band 4 - .5 to .6 microns

Band 5 - .6 to .7 microns

Band 6 - .7 to .8 microns

Band 7 - .8 to 1.1 microns

10. Test Area: Eastern Tennessee for complete coverage.

Tennessee, Kentucky, Northern Alabama, Northern Mississippi,

and western North Carolina for selected dates of coverage.

11. Data Collection Frequency: Once every 18 days between August 22, 1972,

and October 24, 1974.

12. Analysis Equipment: 8x Tube magnifiers, fine scale comparators,

Hamilton light tables/Scandig 25 micro-densitometer

and IBM 360-65 Computer/Image Analyzer VP-8 System/

Beseler and Omega Dark Room Enlargers and Map-O-Graph

vertical enlarging projector.

13. Economic Considerations (Cost Benefits) - Quick cyclic repetive

coverage. Synoptic view. Large area coverage

available at lower cost. For imagery alone the cost

for complete coverage of Tennessee would be $140 of

ERTS imagery compared to $150,000 for high altitude

aircraft imagery. The synoptic view allows for quick

generalized landuse mapping of all of the level I

categories of Anderson's landuse, classification and

many of the level II categories. The map of agricultural



22

regions for Tennessee and Kentucky was prepared from

ERTS imagery in a total time of 20 man hours (see Section

4). An estimated 30 man days would have been required if

high altitude aircraft data had been used.

14. Operational Capability: Already the system provides enough initial

data to begin operational landscape change detection

and monitoring. For long term change detection and

operational capability, the system needs only to continue

under ERTS-I or be continued through successive ERTS-B,

C, etc. Because of the excessive cloud cover over much

of the earth, extensive periods of coverage are needed

to obtain a series of clear observations for any

particular study area. For example: the East Tennessee

Test Site received 25 ERTS observations and of these

only 9 can be considered of particular clarity, and

usefulness to the problem of landscape change. Thus

under these conditions, many orbits and observations

are required to produce a minimal number of useful

sets of data.

2.13 STAGE 2 - RB-57 HIGH ALTITUDE AIRCRAFT

1. Altitude - 60,000'

2. Image Scale - 1:120,000

3. Image Area - 289 square miles

4. Linear Distance per Frame - 17 miles

5. Sensors: Wild-Heerbrugg RC-8 6" Lens f/l

Zeiss RMK 12" Lens f/1
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6. Film/Product: Kodak Ektagraphic EF Aerographic (Normal Color #SO-397

Kodak Aerochrome Infrared (Color Infrared) #2443

7. Film Media: 9 x 9 Normal Color and Color Infrared Transparencies

8. Filters: Haze Filter - for SO-397 film

Wratten 12 Filter - for 2443 film

9. Spectral Bands: Normal Color (SO-397) - .3 to .7 microns

Color Infrared (2443) - .4 to .9 microns

10. Test Area - Upper East Tennessee. From the Kentucky-Virginia border

with Tennessee southward to 50 miles south of Knoxville.

East-West coverage from Boone, North Carolina, to

Crossville, Tennessee. North-South linear distance

80 miles by an East-West distance of 150 miles.

11. Data Collection Frequency: One overflight for this coverage on

April 18, 1972. Note: Other RB-57 imagery for portions

of this same area exist for 1 flight line between Knoxville

and Chattanooga in May 1971 and coverage for western

North Carolina centered on Asheville, North Carolina for

June, 1969. Furthermore, in February and May, 1973, addi-

tional coverage was made by a U.S. Air Force U-2 mission

over central Tennessee and southeastern Tennessee. We

now have access to 20 frames of this coverage.

12. Analysis Equipment - 8X Tube Magnifiers, fine scale comparators,

Hamilton light tables/Beseler and Omega dark room enlargers,

Map-O-Graph Vertical Enlarging Projector.

13. Economic Considerations (Cost Benefits) - High altitude aircraft

imagery has proven its value to remote sensing for more
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than a decade. Until satellite imagery, high altitude

imagery was the only data source for large regional

coverage with a synoptic view from each image. The value

of RB-57 imagery to this investigation should be obvious:

as a data base, a map base, and source of controlled

information. If we consider RB-57 overflights for a

single project, the direct costs incurred are expensive -

approximately $35,000 to fly the East Tennessee mission.

If the imagery had been purchased from the EROS Data

Center, Sioux Falls, S.D. the costs would have been

$2,435. However, the April 18, 1972 mission was produced

by NASA for a Tennessee Valley Authority and Association

of American Geographers project. Copies of the imagery

have since been obtained by this investigation, the

Tennessee State Planning Office, various divisions within

T.V.A., and slides of the imagery obtained by local planning

agencies such as the East Tennessee Development District

and others. The dispersal of data sources such as this

highflight data is of a considerable cost benefit nature.

A multitude of research groups now have imagery with which

to research, work, and plan - imagery which would have

been otherwise prohibitive in costs to obtain on an

individual project basis. More effective opportunities

for the dispersal of high flight data needs to be established

in the future.
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14. Operational Capability: RB-57 and U-2 aircraft have proven their

capabilities in previous high altitude missions for other

investigations. For purposes of this investigation on

landscape change, however, the high altitude aircraft

imagery is useful as a data control base but does not offer

the repetitive, cyclic, temporal coverage which ERTS

regularly provides. Furthermore the map scale and areal

coverage from high flights are not as synoptically optimal

as the coverage offered by ERTS. The high flight system

works well for small regions in which landscape and landuse

details are of the utmost importance for a single temporal

slice. But for large areal coverage - statewide or.

regionwide such as for the southeastern United States -

RB-57 or high flight coverage is sketchy at best, expensive,

and even if available still requires extensive mosaicing

to the detriment of scale, accuracy in generalization, and

data manageability. In short, once a data base is established

by high altitude imagery, no further overflights need to be

justified as long as satellite overpasses and low altitude

missions continue to be made available for updating the data

for landscape change detection and monitoring.

2.14 STAGE 3 - LOW ALTITUDE AERO COMMANDER AIRCRAFT

1. Altitude - 7,000' to 10,000'

2. Image Scale - 1:26,751 to 1:38,216

3. Image Area: 8.4 square miles to 17.4 square miles
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4. Linear Distance per Frame: .92 miles (4,904') to 1.32 miles (7,006')

5. Sensors: Two Hasselblad Cameras 80 mm lenses

6. Film/Product: Kodak Ektachrome MS Aerographic - #2448

Kodak Aerographic Infrared Film - #2443

7. Film Media: 70 mm color transparencies

8. Filters: Color Infrared (2443) Wratten #8 or #12

Ektachrome (2448) Haze/Daylight Filter

9. Spectral Bands: Ektachrome (2448) - .4 to .7 microns

Color Infrared (2443) - .4 to .9 microns

10. Test Areas: Test Site I: Knoxville, Tennessee and West Knox County

Test Site II: Cumberland Plateau - Campbell County, Tennessee

11. Data Collection Frequency: Test Site I - Knoxville - 3 missions - two

during the summer of 1972 and one in the

summer of 1973.

Test Site II - Plateau - 1 mission -

spring 1973.

12. Analysis Equipment: 8X Tube Magnifiers, Fine Scale Comparators,

Hamilton Light Tables/Beseler and Omega Darkroom Enlargers,

Map-O-Graph Vertical Enlarging Projector; Rollei 35mm -

70 mm Slide Projector.

13. Economic Considerations (Cost Benefits): The low altitude aircraft

missions were designed to produce low altitude, large

scale detailed information for use in comparison with

ERTS imagery. Their primary value has been for ground

truth information collection. Such missions have been

exceedingly useful in collecting data frominaccessible
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areas such as on the Cumberland Plateau for strip mine

monitoring. The cost of such missions may seem undesirably

high with aircraft operational costs set at $150 per hour.

However, the amount of data received per hour is far more

than can be obtained from the ground. Furthermore, the

vertical map perspective provided by the aircraft overflight

cannot be obtained at this scale in any other effective way.

14. Operational Capability: Low altitude missions are currently operational

for ground truth data gathering services. They are funda-

mentally operational for "quick look" observations of

individual, small research sites such as individual sites

of highway constructions, strip mines, subdivisions,

shopping centers. In this case for spot observations, the.

low altitude system is operational. But the system with

its complex of 70 mm Hasselblad and 35 mm Nikon cameras

is not operational for continuous coverage mapping. If

the requirement is continuous coverage mapping for an

area of 150 square miles or more, mapping cameras and higher

altitudes are required such as through conventional aerial

surveys mapping services or by high flight RB-57 or U-2

platforms.

2.15 STAGE 4 - GROUND OBSERVATIONS

1. Altitude (distance from subject to lens) - 100' to 500'

2. Image Scale - 1:710 to 1:3533

3. Image Area - 4,374 square feet to 83,421 square feet = .1 to 1.91 acres



28

4. Linear Distance per Frame - 81' to 403'

5. Sensors - 35 mm Nikon camera with 50 mm 1.4 fi lens

35 mm Pentax camera with 55 mm 1.8 fl lens

6 x 7 cm Mamiya Press camera with 100 mm 2.8 fl lens

6. Film/Product - Kodak Kodachrome II Color Transparencies

Kodak Plus X Black and White

Kodak Panatomic X Black and White

7. Film Media - 35 mm Black and White Prints/Color Transparencies

8. Filters - Ultraviolet and haze filters

9. Spectral Bands - Kodachrome = Color reversal film balanced for daylight.

Panchromatic .3 to .7 microns.

Plus X and Panatomic X = Panchromatic .3 to .7 microns.

10. Test Areas: Knoxville, Tennessee and West Knox County

Cumberland Plateau - 7 counties

Jefferson County, Tennessee

Great.Smoky Mountains (Sevier County)

11. Data Collection Frequency: As needed for ground truth comparisons with

ERTS and other data sources - approximately 15 separate

observations.

12. Analysis Equipment: Hamilton Light Tables/Beseler and Omega Dark Room

Enlargers/ 35 mm Kodak Carousel Slide Projectors/ 35 mm -

70 mm Rollei Slide Projector.

13. Economic Considerations (Cost Benefits) - Ground truth observations, if

kept to a minimum - as few as are absolutely necessary,

can be obtained at low cost and are exceedingly rewarding.

Ground transportation at a cost of 8¢ per mile is inexpensive
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to the point that even several thousand miles of ground

truth travel can be accomplished at nominal costs.

Although per diem expenses should be considered, they too

do not drastically increase the daily operation of ground

truth investigations. Although the research benefits

which can result from ground truth cannot be measured in

monetary gains, without this stage of the investigation,

many more questions would remain unanswered.

14. Operational Capability - Ground truth research needs no proof of its

scientific value. In any multi-stage, multi-scale

experiment, a necessary stage is one which contains the

objects or elements which form the most basic and fundamental

part of the study. In this investigation of landscape

change, we are most interested in the detailed landscape

features of strip mines, agricultural fields, highway

construction sites, mine tailings, andshopping center and

apartment construction sites. Granted, low altitude

aircraft imagery when used for ground truth observations

performs most ground truth tasks surprisingly well.

However, to obtain the details of strip mining activities,

plowed ground, and construction progress often requires an

on the spot observation and field interview with local

informants to complete the task of establishing accurate

ground truth information.
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2.20 PHOTOGRAPHIC PROCESSING TECHNIQUES

The necessity of producing paper photographic prints for general

analysis and publication illustrations prompted the project to reexamine

and later develop negative printing techniques with the ERTS imagery.

The three product types examined in the following sections 2.21, 2.22,

and 2.23 are comprised of black and white negative prints, black and

white transparencies, and color negative prints. The significant result

is that all were developed as enhanced image products for improved and

more reliable image interpretations.

2.21 BLACK AND WHITE NEGATIVE PRINTING TECHNIQUES

In 1971, this investigator first experimented with the contact printing

of color transparencies (9" x 9") onto positive black and white paper.5

The results were negative black and white prints. Since that time,

negative printing has become a standard and expected procedure in our

research and production with negative prints being obtained from all bands

of ERTS and even from ERTS color composites, from RB-57 imagery and low

altitude aircraft imagery.

The mechanics of printing directly from transparencies is not unique

as nearly all photographic printing is obtained in this way. The primary

difference in negative printing is that positive black and white or color

transparencies are printed directly onto positive black and white or

color paper with a negative print being the result. The darkroom procedure

is the same for negative printing as it is for normal positive print

processing. For enlargements, the positive transparency is placed in

the negative carrier of the enlarger and then projected on to the positive
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paper on the easel. For contact prints, the positive transparency is

placed directly on top of the positive print paper with a heavy plate

glass weighting the combination down onto the easel. Then the enlarger

is turned on for the proper number of seconds for the exposure. For

quick results, instead of exposing with the enlarger, one can turn on the

overhead incandescent room lights for a short 1 to 3 second exposure and

the results are often better than exposures from the enlarger.

Chemical processing of the negative print is the same as with

conventional black and white processing with the use of a developing

bath, stop bath, fix bath, hypo eliminator bath and wash and dry procedures.

In all cases of black and white negative printing it is recommended

that a high contrast print paper such as Kodak Medalist F-4, F-5 or

Kodabromide F-4, F-5 paper be used. The high contrast paper enhances

contrasting information on the imagery and thus produces a photographic

product different from a positive print or a negative transparency.

Utilization

The interpretative value of negatively printed imagery is the

enhancement of light toned objects into dark ones. The imagery in

figure 3 was obtained by contact printing MSS band 5 ERTS imagery onto

Kodak Medalist F-4 black and white positive paper. Landscape features

which in reality are high in reflectance and light in tone, appear

on the negative print as dark tones. The lines and dots of deepest,

darkest intensity are the features with the highest reflectance. Thus

within areas of normally dark forest cover, the imprint of man-made

features such as strip mines, road construction sites, urban clusters,
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Figure 3. ERTS-I band 5 negative print of the East Tennessee
Test Site. Dark tones are enhanced to illustrate
cultural landscape features. 12 July, 1973. Id. no.
1354-15431-5.
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Enhanced Image: Enhancement of cultural landscape features:

agricultural lands, highways, citiesi and surface mines.

Image Identification Number: 1084-15431-5

Image Type: MSS band 5- printed through positive transparency

Altitude: 560 miles

Location: eastern Tennessee/western North Carolina

Date: October 15, 1972 10:43 am

Interpretation/Description: Negative print enhances cultural

landscape features by reproducing them in dark tones. Roads

appear as dark lines (Interstate 81 upper right), cities as

large dark masses (Knoxville left of center), broad agricul-

tural lands to the East, and strip mines as dark lines to the

West.

Technical Information

print paper: Kodak Medalist F-4

Enlarger: Beseler

Lens: Schneider 105mm

Aperture: f 4.5

Exposure Time: 5 seconds

Developer/Developing Time: Kodak Ektaflo #1

1 minute

Stop Bath: Kodak Ektaflo Stop Bath

Fixer: Kodak Rapid Fixer
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and cleared fields are deeply etched as dark tones on the imagery. What

had been a dominant dark forested surface in the original positive imagery,

is now subdued to a light toned, almost imperceptible land cover on the

negative print. This, of course, allows the features of more direct

interest (i.e. strip mines, highways, suburban growth areas, etc.) to

be enhanced and thus become more easily detected, identified, and mapped.

The simplification of the imagery from hundreds of shades and tones

into only a few dark tones on the light toned surface simplify the

interpretation of the image. However, not all imagery should be used

with the black and white negative print technique. Imagery for which

subtle differences between intervening shades of gray must be interpreted

is not usually suited to the technique. The technique operates best in

high contrast situations. For example, the better contrasts are exhibited

by light toned cultural features on dark forested backgrounds such as may

be found in the humid, eastern United States and in areas where dark toned

irrigated farms appear on light colored desert surfaces such as the arid

western United States.

By negatively printing MSS band 7 from ERTS we can produce two

different but striking enhancements of physical landscape phenomenae.

Figure 4 illustrates an enchancement of hydrologic features in eastern

Tennessee through the use of a negative print from band 7. Critical is

the exposure time because the object of the enhancement is to reduce all

shades of gray to two simple tones - black and white. An exposure of

30 seconds through a Schneider lens at an aperture of f/4.5 is sufficient

to "burn" most of the gray and light toned signatures from the original

imagery. In other terms, the process converts everything of light toned
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Figure 4. ERTS-I band 7 negative print of the East Tennessee
Test Site. White tones are enhanced to illustrate
hydrologic features. 12 July, 1973. Id.no. 1354-
15431-7.
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Department of Geography

University of Tennessee

Knoxville, Tennessee 37916

Dr. John B. Rehder - P.I.

Enhanced Image: Enhancement of hydrologic features

Image Identification Number: 1084-15431-7

Image Type: MSS band 7- printed through positive transparency

Altitude: 560 miles

Location: eastern Tennessee

Date: October 15, 1972 10:43 am

Interpretation/Description: Streams and TVA reservoirs

appear in light tones with other physical features

suppressed. Note light toned enhancement of surface

moisture on the western slopes of the Great Smoky Mountains.

Technical Information

print paper: Kodak Medalist f-4

Enlarger: Beseler

Lens: Schneider 105mm

Aperture: f 4.5

Exposure Time: 30 seconds

Developer/Developing Time: Kodak Ektoflo #1

20 seconds

Stop Bath: Kodak Ektaflo Stop Bath

Fixer: Kodak Rapid Fixer
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value into a dark, almost black background, thus leaving the objects

which reflect as water signatures as white lines and dots on the negative

print. It is important to understand that water features shown on a

positive print or transparency of band 7 appear as deep, dark signatures

whereas on the negative print, water features appear white.

Figure 5 illustrates the enhancements achieved by negatively printing

band 7 with a normal exposure time. This lightens the background and

reveals a topographic enhancement. In the original positive infrared

transparency, the land surface was expressed in shades of gray with

little or no differentiation between tonal patterns, i.e. a subtle and

almost homogeneous background. However, on the negative print, the former

gray surface is converted to a darker one with a highlighting effect

applied to areas of surface roughness. Thus landforms with relatively

pronounced slope characteristics are revealed appreciably in an enhanced

light. The rugged mountain surfaces of the Great Smoky Mountains appear

to the east and southeastern portions of the image and the roughened

dissected sections of the Cumberland Plateau appear to the west and

northwest. Within the Ridge and Valley area of East Tennessee, at the

center of the image and extending diagonally northeast to southwest, one

can see even smaller landforms such as low ridges and knobs enhanced

on the image.

2.22 NEGATIVE TRANSPARENCY PRODUCTS

Kodalith, a transparent, negative-like material, is another medium

upon which we have processed ERTS imagery. Using a positive band 5

transparency, we have produced a negative transparency from a positive

transparency. One would suspect that such a procedure would be needless
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Figure 5. ERTS-I band 7 negative print of the East Tennessee

Test Site. Note the combined enhancements of hydro-

logic features and landforms. 12 July, 1973. Id.no.

1354-15431-7.

9i
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NASA-ERTS Geography Remote Sensing Project
Department of Geography
University of Tennessee
Knoxville, Tennessee 37916

Dr. John B. Rehder - P.I.

Enhanced Image: Enhancement of topographic and hydrologic

features.

Image Identification Number: 1084-15431-7

Altitude: 560 miles

Location: eastern Tennessee/western North Carolina

Date: October 15, 1972 10:43 am

Interpretation/Description: Negative print enhances

light toned hydrologic features-reservoirs, streams, and

surface moisture. Topographic grain, surface roughness,

slope angles and lineated ridges are sharply enhanced.

Technical Information

print paper: Kodak Medalist F-4

Enlarger: Beseler

Lens: Schneider 105mm

Aperture: F 8

Exposure Time: 10 seconds

Developer/Developing Time: Kodak Ektaflo #1

1.5 minutes

Stop Bath: Kodak Ektaflo Stop Bath

Fixer: Kodak Rapid Fixer
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with the availability of 70 mm negative transparencies directly from

N.D.P.F. (Nasa Data Processing Facility - User Services). The values of

producing our own negative products are threefold: (1) Negative transparencies

can be made in larger formats of 5" x 7" to 8" x 10", (2) negative

transparencies made with Kodalith are high in tonal contrast, and (3)

Kodalith transparencies can be produced in either negative or positive

transparency products and then projected onto viewing screens or onto

positive print paper in the darkroom for print products.

Utilization. The transparent nature of Kodalith is its primary

significance to the project. Not only can it be projected for public

viewing, it can also be edited by darkening or painting out undesired

objects or tonal patterns. For example, in the production of a "forest-only"

thematic map, we produced a Kodalith negative transparency from a positive

band 5 transparency and then painted out the superfluous object signatures

such as some of the cloud cover and water features. The result was the

forest cover example in Figure 6.

Kodalith is especially useful in producing multiples of negative

transparencies for different observation dates. By sandwiching various

combinations of transparencies from different observation dates, it is

possible to determine selected landscape changes which have occurred

between the different dates.

2.23 COLOR NEGATIVE PRINTING

The production of color negative prints from color transparencies

has been one of the more recent accomplishments of the project. As of

October, 1973 we have been processing ERTS-I bulk color composites

into color negative prints in a variety of enlargements and color combinations.
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Figure 6. Positive print from a Kodalith transparency (negative)

which was generated from an original positive ERTS-I
band 5 transparency. All black tones represent forest
cover. East Tennessee Test Site. 12 July, 1973. Id.no.

1354-15431-5.
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Enlargements from 2X to 4X or up to 1:250,000 map scale have been made

and color combinations have been produced in 5 combinations with the most

useful being the one shown in Figure 7.

The technique of negative color printing requires basic color

processing equipment and fundamentals which are not wholly different from

those in black and white processing. Philosophically and technically

the negative print technique is the same for color and black and white.

To produce color negative prints on a small scale the photo technician

minimally requires beyond a basic black and white darkroom setup the

following items: A Kodak Ektaprint #3 Color Processing Kit, Ektacolor

RC 37 paper, accurate color processing thermometers, and controlled water

temperatures to within 1 degree Fahrenheit.

The contact printing procedure is much the same as for black and

white. The bulk color positive is placed over the RC 37 color print paper

and held in place by a heavy plate glass cover. Exposure is accomplished

by a darkroom enlarger equipped either with a color head or a set of

color compensating filters. The color filtration is set to the following

arrangement: cyan = 0, magenta = 50, yellow = 50. Exposure for the

print in figure 7 was f/ll at 13 seconds. Processing of the print is

done in four stages: developing 3.5 minutes, bleach/fixer = 1.5 minutes,

wash = 2 minutes, stabilizer = 1 minute. Following this, the prints are air

dried for approximately 15 to 20 minutes after which the printing and

processing procedure is completed.

Utilization. Paramount to color negative printing is the use of

color compensating filters in the photographic enlarger to produce

appropriate colors for land coversignatures. The result is the color
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Figure 7. Negative color print generated from an ERTS-I bulk
color composite. East Tennessee Test Site. 12 July,

* 1973. Idno. 1354-15431.
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print in Figure 7 with green colors and hues representing forest cover,

yellow or tan representing water features, red for urban areas and major

highways, and maroon representing cleared land and agricultural land

combinations. Although not completely "natural in color," this color

product in part realistically associates green hues with forest cover

and a muddy yellow color to the water features. Certainly not all of

the hydrologic features in East Tennessee are actually a silty tan but

the rendition is acceptable for some. The high contrast between the green

and red hues is important to the separation of physical and cultural

landscapes. The red and maroon color assignments accentuate the cultural

landscape features of urban-high density settlement, highways, cleared

(deforested) lands, and agricultural bands. When matched with the green

forest signature, the red and maroon color assignments become sharply

contrasted and are thus more easily discerned and mapped.

2.24 UTILIZATION SUMMARY OF ENHANCED PHOTOGRAPHIC PRODUCTS

To sum up the utilization of the three photographically enhanced

image products - negative prints, negative transparencies, and color

negative prints - it is best to compare their uses in landuse mapping.

In reference to Figure 8 below, under category 1, note that the high

density urban category can be detected and mapped with the use of Kodalith

and color negative enhancements. Although with negative black and white

prints we can detect an urban category, it is a broad based one of urban

and built up land with an absence of details in higher density settlement.

Note, however, that with the color negative print the differences between

high density and medium density urban can be determined.



ENHANCED ERTS PRODUCTS AND LAND USES THAT CAN BE
CONSISTENTLY IDENTIFIED WITH THEM

PRODUCT NEGATIVE PRINTS KODALITH NEGATIVE COLOR NEGATIVE PRINTS

TRANSPARENCY

(Original) (Bulk B & W Bands 5, 7) (Bulk B & W Bands 5, 7) (Bulk Color Composite)

1. URBAN & BUILT UP LAND 1. HIGH DENSITY URBAN 1. HIGH DENSITY URBAN

2. AGRICULTURAL LAND 2. AGRICULTURAL & 2. MEDIUM DENSITY URBAN

CLEARED LANDS

3. FOREST LAND 3. FOREST LAND 3. AGRICULTURAL & CLEARED

LANDS

4. WATER 4. WATER 4. FOREST LAND

5. BARREN LAND 5. WATER

Figure 8
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All three enhanced products allow for the detection and mapping of

the next three categories: Agricultural and Cleared Lands, Forest Land,

and Water. Each product is sufficiently different to produce different

degrees of detectability. Agricultural and cleared lands are best

detected and mapped from color negative prints. Forest land is best

mapped from Kodalith. Water surfaces are best detected and mapped on

ERTS band 7 negative or positive products. The final.landuse category -

barren land - is identified and mapped most effectively from negative

print products.

The information in Figure 9 combines all photographic techniques

and describes two levels of landuse classification obtainable from enhanced

ERTS imagery and supplementary sources. Under the unaided interpretation

level, all landuse categories from urban and built up through agricultural,

forest, water, and barren land can be detected and mapped from the

collective group of enhanced ERTS imagery techniques.

Under the supplemented interpretation level, all detailed categories

can be detected on ERTS imagery but for those categories marked with an

asterisk (*), additional stages of aircraft imagery are required for a

positive identification of the category. Those categories which are

unmarked can be clearly detected, identified, and mapped from the photo-

graphically enhanced ERTS imagery.

2.30 MICRODENSITOMETER AND COMPUTER TECHNIQUES

Through the services of Dr. Robert Bodenheimer in the Electrical

Engineering Department at the University of Tennessee, image processing

from microdensitometer and computer techniques have been performed for

the project. As a service and experimental project, Bodenheimer's Image

Processing Facility is designed to produce enhanced image products for
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LAND USE CLASSIFICATION SCHEME UTILIZING ALL

PHOTOGRAPHIC TECHNIQUES, PRODUCTS AND DATES

UNAIDED INTERPRETATION SUPPLEMENTED* INTERPRETATION

URBAN AND BUILT UP LAND 1. HIGH DENSITY URBAN

2. MEDIUM DENSITY URBAN

*3. RESIDENTIAL

4. TRANSPORTATION

5. MIXED

AGRICULTURAL LAND 1. CROPLAND

*2. PASTURELAND

FOREST LAND 1. EVERGREEN

2. DECIDUOUS

WATER 1. STREAMS

2. RESERVOIRS

3. LAKES

BARREN LAND 1. STRIP MINES

2. TRANSITIONAL

*Requires aircraft imagery for
positive identification.

Figure 9
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the other ERTS investigators on campus (Figure 10). The basic capabilities

of the Image Processing Facility which have been utilized by this project

are as follows:

A. Computer Generated Data Printouts

1. Symbolic

2. Pictorial Graytone

3. Histogram Generation

4. Digital Filtering

B. Imagery Enhancement Techniques

1. Spectral Gradients

2. Clustering

3. Filtering

4. Color Additive Enhancement

5. CRT Display

6. X-Y-Z Display

Primary equipment utilized by the facility include: a Tech/Ops

Scandig microdensitometer Model 25, a Kennedy Model 3110 9-track digital

tape recorder, and the University of Tennessee Computer Center's IBM

Computer System 360/65. The microdensitometer has a scanning aperture

of 25, 50, and 100 microns and can measure densities over 256 increments.

For our purpose a filtration of the densities was required to

provide adequate contrast parameters in the analysis of ERTS imagery.

Figure 11 represents a computer generated printout of densities from ERTS

imagery coverage of a strip mine area on the Cumberland Plateau. Because

of the detailed scan by the microdensitometer the map scale has been

enlarged from 1:3,300,000 on the originally 70 mm ERTS image to 1:33,000

on the computer map.
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Mag
...... Tape

-- --- Digitized Data - -
A - ERTS Data

NDPF Investigators

Digitized Data

I I

I I

I

Computer Modification
Center and Development

IBM System/360/65 of new Software

Computer
Output

Data
Analysis
Evaluation'

Figure 10. Flow diagram showing the handling

and processing of data.
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Utilization. The utilization of the microdensitometric and computer

techniques has not been to the degree that we had originally expected.

Delays in receipt of the initial ERTS imagery, mechanical breakdowns

in the microdensitometer, and the delays in acquiring computer compatible

programs and tapes for interfacing directly from ERTS tapes to computer

printouts have all led to a minimal utilization of the system.

Despite these problems, an experiment with the microdensitometer

and computer was conducted to analyze ERTS Band 5 imagery for strip mine

changes. The experiment involved the microdensity scanning of the

imagery for strip mines which appear as light tones against a dark forested

background. The gray tone densities were then digitized and computer

processed into a computer map and histogram. The object was to perform

the procedure on ERTS imagery from two or more different dates. By

comparing the machine analyzed data from the two dates, we attempted to

determine if the number of light tones indicating strip mines had

increased at the expense of dark tones for the same area. Unfortunately,

extraneous signatures from clouds and light colored roads in the area

resulted in the inverse from the expected. The two histograms in figure 12

represent the frequency distribution of the gray tones for the two observed

dates of imagery. The August image was expected to appear with a fewer

number of light tones (representing strip mines) than the October image.

However, the opposite occurred because cloud cover led to a presentation

of more light tones for August than for October.

I am convinced that given time and two or more cloud free images,

such an experiment could reach a satisfactory conclusion. In concept,

the experiment is justified and could and should be continued in the future.
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2.40 ELECTRONIC IMAGE ANALYSIS - VP-8 IMAGE ANALYZER

Also within the Image Processing Facility and under the direction

of Dr. Bodenheimer is the VP-8 Image Analyzer System. Designed as a

color additive viewer through microdensitometric and electronic manipula-

tion, the system has been of greater success with our project even though

we have only operated it during the remaining two months of the project.

The components of the VP-8 system include: a CCTV Input camera,

the VP-8 analyzer, a black and white television monitor, a color television

monitor, and a Hewlett-Packard X-Y-Z three dimensional monitor (Figure 13).

Functionally, the system incorporates use of the CCTV camera to "photograph"

a backlit ERTS transparency. The picture is then transmitted via cable

to the VP-8 where the signal is measured densitometrically and for each

density color coded. From the VP-8, the image is displayed either in

black and white on the monochrome television display or in color on the

color television display. Also from the VP-8, the image can be displayed

on the X-Y-Z monitor where three dimensional presentations of the image

can be made. The three dimensional image can also be rotated + 180 degrees

and inclined to 90 degrees to permit different viewing angles. Single

scan line profiles of densities for any given horizontal cross section

can also be displayed.

Within the .VP-8 unit itself, is a digital readout display which can

produce a density readout for any given coordinant on the viewing screen.

Utilization. The primary function of the VP-8 system for our project

has been the capability of density level slicing and color enhancing.

With level slicing, a display of from 1 to 8 colors can be achieved with

each level color coded. For example, forest cover being a dark toned
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Figure 13. VP-8 Image Analyzer System (below). Note CTV camera
at right focused on ERTS transparency, X-Y-Z display
at center, and VP-8 analyzer and monitors at left.
(above)- Monitor output from VP-8. Upper screen shows
density level slices from VP-8. Lower screen shows
normal black and white image. Both are negative prints.
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signal on a Band 5 ERTS image can be coded in up to 8 colors with a dark

or heavy density color such as brown or purple. Another color such as

green can be assigned for the next density area for agricultural lands.

If a water signature is present it can be assigned above the agriculture

category as yellow. For the final density unit, we can assign a bright

red or orange for high density settlement and transportation networks.

In essence, through the manipulation and assignment of color codes to

density levels, we can produce a landuse display based on the above.

Level I landuse categories.

Can we consider this as a possible working solution to landuse

mapping? I believe so but with reserved optimism. First, consider the

ways in which we analyze imagery. The human interpreter basically looks

at tonal variations in terms of light or dark signatures to interpret

black and white ERTS imagery. Tonal variations reflect densities which

can be measured, sorted, and displayed by the VP-8 system. Thus, the

VP-8 distinguishes between light, gray, or dark toned areas and displays

mappable areas to which we assign landuse interpretation. The VP-8 can

only reconstitute and sort density levels for us. We must interpret

those levels in terms of landuse categories. The interpretation can only

be as good as the interpreter. His subjective and objective knowledge

of the area enters a bias which the VP-8 cannot override.

The interpreter or VP-8 machine operator selects the color assignments

for different densities and also determines, in part, the spatial distribution

of density levels. He can combine density levels into a common color unit

and thus obliterate detailed information. Conversely, the interpreter

can display up to 8 density color slices and combinations with highly



56

detailed definition. It is this kind of subjectivity in the choice of

density combinations which alarms some investigators.

No single interpreter, interpretation system, or for that matter

data gathering device, or sensor can possibly meet the needs of every

investigation. The VP-8 must be used with caution with the understanding

that it produces color coded densities which the interpreter must choose

to display.

Besides landuse mapping from the VP-8, we have experimented with

its use in detecting high density settlement such as central business

district areas, shopping center complexes, and suburban subdivisions.

High density settlement features reflect from ERTS imagery in bright

returns. By selecting only the brightest signatures for an urban scene,

from the VP-8 choice of densities, we can present and identify the areas

of high density settlement. Caution, again, must be taken in the interpreter's

choice of bright signal returns because airport runways return the same

signals as high density settlement.

2.50 SUMMARY AND CONCLUSIONS

Techniques of data collection and analysis used within the investiga-

tion included: (1) multi-stage sampling procedures, (2) photographic

enhancement techniques, (3) microdensity and computer mapping techniques,

and (4) electronic image enhancement and analysis techniques. Of these,

the multi-stage sampling procedures and the photographic techniques

provided more direct utilization to the goals of the project. Both

techniques-systems generated effective data collection and basic analysis

to the problem of landscape change detection and monitoring. The multi-stage
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sampling procedures produced a selected variety of image scales which

could be cross-compared, contrasted, and analyzed for change detection

and analysis. Photographic techniques produced enhanced imagery which

enabled us to distinguish between landuse and landscape categories such

as forest, water, agricultural/cultural, urban, highways, and strip mines.

Disappointing to the present investigator's results, but potentially

useful are the techniques of microdensitometry-computer mapping and the

image analyzer system. Although our utilizations of these techniques

were minimal because of mechanical breakdowns and delays in receipt of

imagery and equipment, we are confident that these techniques could benefit

future experiments and investigations in landscape change detection and

monitoring. The computer mapping portion of these techniques holds the

most promise for change detection and mensuration. The image analyzer

system provides a promising capability in area measurements of selected

densities. Hopefully such densities can be eventually and exclusively

identified with single landuse categories. Because the computer and image

analyzer systems depend wholly on densities, the difficulty of separating

densities of like properties such as clouds from strip mines and certain

bright reflecting water surfaces from high density urban areas for areal

measurement remain beyond the scope of the present investigation.
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PART III

THE APPLICATIONS OF ERTS-I IMAGERY TO THE

LANDSCAPE CHANGE ANALYSIS OF

SELECTED PHOTOMORPHIC REGIONS

The following sections, 3 through 8, report on the primary

applications of ERTS-I imagery for the analysis of landscape

change. Through these efforts and results, the utility of

ERTS as a system for detecting and monitoring landscape change

is illustrated. Additionally, the results further illustrate

the varying scales of data and their presentation through the

use of ERTS imagery. For instance in section three on strip

mining, the mapped data base is 1:120,000 to which ERTS data are

modified to fit. In section 4, 14 ERTS images are mosaiced to

cover the agricultural regions of Tennessee, Kentucky, and parts

of Alabama and Mississippi. Section 5 on Tennessee's forest cover

is also the result of a mosaic of 14 ERTS images. Section 6

on urban-suburban growth detection is based on a 1:120,000 scale

modification. Finally, section 7 (Short Lived Phenomenae) is

based on the normal 1:1 million scale of the 9 x 9 ERTS imagery

except for the mosaics of the Mississippi River floods of 1973.
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3.0 LANDSCAPE CHANGE ANALYSIS - STRIP MINES

3.1 INTRODUCTION

The applications of ERTS-I imagery to the detection and monitoring

of strip mining landscape change are positive, reliable, and capable

of becoming operational. The strip mine landscapes on the Cumberland

Plateau in Tennessee are excellent examples of dynamic landscape

modification representing a variety of states of change: (1) recently

cleared/deforested, (2) actually stripped for coal, (3) current

reclamation, and (4) reclaimed. Located in Campbell and Morgan

Counties, Tennessee, the Cumberland Plateau Test Site offers all

states of strip mining landscape change with the most significant

being lands under direct and actual strip mining processes.

3.2 SIGNIFICANT RESULTS

From ERTS imagery and RB-57 high flight imagery, a map depicting

strip mining landscape changes has been produced. To facilitate

the legibility of the mining changes the map was prepared at a scale

of 1:120,000 with the high flight imagery used as the scale and data

base and the ERTS imagery enlarged to fit the 1:120,000 map scale.

Figure 14 illustrates the strip mining landscape changes at

the test site between the dates of April 18, 1972 and October 15,

1972. The darkest tones on the map represent the strip mines as of

April, 1972 mapped from high flight RB-57 imagery. The light gray

tones on the map represent additional strip mines and mining expansion

as mapped from the October 15th ERTS-I imagery. The ERTS imagery
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Figure 14. Landscape change created by strip mining at the

Cumberland Plateau Test Site. April 18,1972 -
October 15, 1972. NASA/MSC high flight mission 197

image numbers 26-0050 and 26-0063. ERTS-I band 5
id. no. 1084-15431-5.
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used to produce this initial strip mine map is a portion of band 5

frame #1084-15431. The modification of the 1:1 million ERTS frame

to the 1:120,000 large scale data base presented no problems in

registration. The procedure was accomplished by drafting a base

map of the strip mines as of April from the high flight imagery.

Then with a photographic enlarger, the ERTS image was enlarged to

a scale of 1:120,000 and the additional October strip mine signatures

were drafted directly onto the base map. Although precise map

standard measurements cannot be wholly accomplished from this

procedure the overall effect of the map presentation is acceptable.

Results from this initial experiment indicate that strip mines can

be detected and mapped from ERTS with relative ease and speed and

that ERTS offers a potential for monitoring such landscape changes

in the eastern United States.

3.3 DETECTION AND IDENTIFICATION OF STRIP MINES ON ERTS IMAGERY

The analysis of ERTS imagery for strip mine detection and monitoring

depends on the ability of the interpreter to identify strip mining

signatures on the imagery. In Figure 15, a matrix of all ERTS original

and enhanced products and the strip mine signatures which can be

detected, identified and mapped from ERTS indicates the versatility

of ERTS-I imagery.

Strip mines on original ERTS band 5 imagery, appear as light

toned, jagged lines on a dark forested background. From a black and

white negative enhancement, mining signatures appear as dark, solid

lines as illustrated in Figure 17. On band 7 from the ERTS imagery,



DETECTION OF STRIP MINE SIGNATURES FROM ERTS-I IMAGERY

ERTS-I Edge Internal
Image Product Tone/Color Shape/Pattern Distinction Characteristics Background

Bulk Black & White White, jagged lineations fair to good None Dark - forest
Band 5 Positive uniform cover
Transparency

Black & White Black, jagged lineations excellent None White - forest,
Band 5 Negative print uniform water

Bulk Black & White Dark, dots and smaller poor to fair Good for water White, light
Band 7 Positive irregular lineations impoundments only gray - all
Transparency land surfaces

Black & White White, dots and smaller poor Excellent for Black - for all
Band 7 Negative print irregular lineations water surfaces only land surfaces

Bulk Color Composite Yellow, jagged lineations fair to good Good for distin- Red - forest
Positive Transpar- irregular of newly stripped guishing water cover
encies (Bands 4, 5, & tan land - sandstone from earth
7) reflecting surfaces

" Light & dark dots and smaller good Good for detecting Red - forest
blue, irregular lineations water surfaces cover; Yellow -

within strip mines strip mined
cleared earth

" Dark gray and lineations and good Best for detecting Red - forest
Electric Blue, larger dots active and recently cover; Yellow -
irregular stripped mining cleared earth

areas

Color Composite Dark red jagged lineations excellent None Blue, green,
Negative Print maroon, uniform cyan - forest

cover

Figure 15
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strip mines are more difficult to detect because of a convergence

of land surface signals on the infrared band 7 imagery. However.

water surfaces are sharply detailed on band 7 so that impounded

ponds and water catchments which occur following strip mining appear

on the imagery. We have been able to detect and measure strip mine

ponds as small as 200 feet in width from 9 x 9 black and white

transparencies from ERTS.

The bulk color composites of ERTS imagery corroborate the

signatures from bands 5 and 7 and add significant combined information.

Strip mines appear on the bulk color composites in several signature

groups: (1) lineations of light yellow or tan indicating the presence

of cleared earth and sandstone surfaces, (2) light or dark blue dots

indicating impounded water in surface ponds, and (3) as lineated

dark gray and "electric" blue signatures indicating active or recently

stripped mines. Similar dark gray and blue signatures can be verified

for other strip mining areas such as the Western Kentucky coal fields.

From a negative color print derived from a positive color

composite, a uniform, single color/tone signature is produced (see

Figure 7). The color negative print, recreates dark etchings of

strip mines, much like the black and white negative print of band 5

does and thus internal characteristics are lost from the scene.

In summary, our findings reveal that a multispectral combination

of ERTS image products are necessary for a full understanding of the

location, distribution, size, shape, and internal characteristics of

strip mines as seen from the ERTS perspective alone.
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3.4 CHANGE DETECTION OF STRIP MINING

No single remote sensing platform (stage), scale, or sensor

can be expected to provide all the information necessary for the

analysis of strip mining from a remote perspective. It is imperative

that an examination of this form of landscape change begin with a

multi-stage multi-scale procedure.

The initial step is to analyze the RB-57 high flight imagery as

a data base and identification medium. Strip mines appear on the

original color infrared imagery as gray, irregular, jagged lines which

follow the contours of the mountains. Unlike local dirt roads,

strip mines are usually wider and do not form linkages between each

other and other geographical points. Figure 16 is a negative print

of the northern portion of the Cumberland Plateau Test Site. The

strip mines illustrated here are shown as dark jagged lineations on

a white but forested background. Note the extent of cleared, stripped

land indicated by the strip mine immediately north and east of the

arrow. By comparison in Figure 17 of an ERTS band 5 negative print,

we can see not only the configuration of the same strip mine from

the previous illustration, but can also detect from this October 15th

image an additional section of cleared land marked by the additional

dark tones immediately north of the arrow. Of considerable importance

is the capability of the negative print to enhance and display the

additional strip mines in dark tones. Such enhancements aid in

the detection and identification of newly cleared lands and favor

the mapping of such features as cleared, stripped, or otherwise

deforested land.
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Al4

Figure 16. Strip mine signatures on a negative print of the
Cumberland Plateau Test Site. RB-57 high altitude
aircraft mission at 60,000'. Note the absence of
strip mines indicated by the arrow as compared with
the presence of strip mines for the same location on

* /+
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Figure 16. Strip mine signatures on a negative printl, 1972. Missionof the
197 sitCumberland Plateau Test Site. RB-57 high altitude

aircraft mission at 60,000'. Note the absence of

strip mines indicated by the arrow as compared with

* the presence of strip mines for the same location on

the ERTS frame in figure 17. 18 April, 1972. Mission

197 site 177, frame 26-0063.
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Figure 17. Strip mine signatures on an ERTS-I band 5 negative

print. Note the degree of strip mining north of the

arrow as compared to figure 16. 12 July, 1973.
Id.no. 1354-15431-5.

)V

OOP

Figure 17. Strip mine signatures on an ERTS-I band 5 negative
print. Note the degree of strip mining north of the
arrow as compared to figure 16. 12 July, 1973.

Id.no. 1354-15431-5.
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3.5 GROUND TRUTH INVESTIGATIONS OF STRIP MINES

Within the multi-stage, multi-scale procedure, low altitude

aircraft overflights at 7,000' and field work observations have been

utilized for the ground truth analysis of strip mines. From the

aircraft platform, 70 mm Hasselblad imagery was generated in normal

color Ektachrome and Color Infrared film types. In Figure 18, the

imagery has been reprinted into negative prints which illustrate three

stages of strip mine development. Image 1 illustrates the initial

landscape change activity in strip mining - i.e. forest clearance.

The dark lineation is newly deforested swath which has been prepared

in anticipation of continued strip mining. Image 2 displays the

surface contrasts between a swath of recently deforested ground and

a swath of land being stripped for coal at the cutting edge of the

strip mine operation. Image 3 displays the same mine as in image 2

but with more coverage of the rough gouged surface, road tracks, and deep

pits where an auger is being used. Image 4 illustrates the relative

revegetation - natural reclamation of older strip mining scars.

Although the mines in image 4 are being reclaimed by natural over-

growth, they are approximately 12 to 15 years old and are being

reclaimed at a slow rate. The characteristic signatures from the old

mines are their narrow width of 30' to 80' and the natural vegetation

of pines, scrub oak, and undifferentiated brush which is reclaiming

them. Because of these subtle signatures, older strip mines and

their reclamation cannot be detected on ERTS imagery. It may be

possible to detect the positive reclamation of the newer wider (300 to

2,000') strip mines if they are reclaimed with thick stands of
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I 2

3 4

Figure 18. Low altitude aircraft imagery of strip mines on the
Cumberland Plateau Test Site. (1) recently cleared;
(2) active strip mine at left; (3) active strip mine;
(4) old reclaimed mines. All images are negative
prints generated from color infrared 70mm transparencies.
Altitude: 7000'.
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evergreen vegetation and are observed by ERTS during a clear winter

overpass. If these conditions of evergreen reclamation and winter

observations are not present, then the detection, identification,

and mapping of strip mine reclamation from ERTS imagery is not likely

to be feasible.

Actual ground truth observations of strip mining yield little

additional information other than can be gained from the low altitude

aircraft overflights (Figure 19). The strip mines of the Cumberland

Plateau are difficult to reach by the slick, narrow, deeply rutted

roads, which coal trucks use to haul the coal from the mines. A

further difficulty is harassment from some of the mining personnel

who view trespassing institutional vehicles (i.e., Federal, state,

local government and University cars) as carrying mine inspectors or

other regulatory personnel.

Despite these inconveniences our observations reveal that

reclamation work in its initial stages can be first assessed only by

ground truth work. Fertilizers, and initial grass seeding cannot be

detected even from low altitude aircraft. Certainly as the revegetation

process begins to flourish, the monitoring of strip mine reclamation

becomes possible from the low altitude aircraft platform using color

infrared film.

The only other information gained by actual ground truth

observations are the verifications of interpretations and analysis

of the aircraft and ERTS imagery and the contact with informants

in the area.
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Figure 19. Ground Truth photograph of a strip mine operation
at the Cumberland Plateau Test Site. April,1973.
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3.6 EVALUATION AND POTENTIAL USE OF ERTS IN STRIP MINE DETECTION AND

MONITORING

Within any vegetated area in which strip mining is taking place,

strip mines and their resultant landscape changes can be detected.and

monitored from ERTS imagery. The knowledge that strip mines exist in

a region is perhaps the initial key to the eventual detection and

monitoring of strip mining landscape change. The primary interpretation

key, to such detection and monitoring, however, is the target signatures

of light tones on dark vegetated backgrounds. It makes little difference

whether the vegetation is forest cover, or mixed forest-pasture-cropland

combinations as long as the cleared earth signature of the strip mine

appears against the vegetated background.

Size and shape signatures verify the existence of strip mines.

The appearance of rough textured lineations with no apparent linkages

such as occur on the rough topography of the Cumberland Plateau are

strip mine signatures. Likewise, the broad irregularly shaped contiguous

surfaces of strip mines in the more gentle surfaces of the western

Kentucky coal fields display their own signatures for a somewhat

different stripped landscape.

For the detection of strip mines of less than 200' wide and

revegetated or reclaimed strip mines, ERTS imagery is severely

limited. As yet, we have been unable to detect mines with these

smaller and more obscure characteristics. ERTS cannot be expected

to provide all the necessary data required in strip mine mapping

and monitoring. However, it provides enough sufficiently reliable data
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from its imagery that I am convinced that ERTS-I and successive

ERTS systems have the capability of becoming operational for the

identification, monitoring, and mapping of the majority of strip

mining landscape changes.
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4.0 AGRICULTURAL LANDSCAPE CHANGE

The agricultural landscapes of East and Middle Tennessee are

dominated by a chaotic pattern of tiny fields measuring from one-third

acre to usually no more than 50 acres in size. With landscape cells

as small as these, one would question the feasibility of detecting

and monitoring an agricultural landscape from the ERTS perspective

of 560 miles altitude.

The analysis of ERTS-I imagery for landscape change within the

agricultural category of landuse did not become available until the

summer of 1973. The agricultural scene was initially obscured by

haze and cloud cover on the August 1972 imagery, almost microscopic

on the October imagery, and snow covered on the January and February

imagery. However, for April and May, the agricultural landscape

emerged as a significantly dynamic surface exhibiting plowing signatures

and cleared fields.

4.1 SIGNIFICANT RESULTS

The detection and mapping of plowed fields from ERTS form the

basis of significant results. From the April 14, 1973 ERTS-I band 5

imagery of Sand Mountain, Alabama and the Sequatchie Valley of Tennessee,

the initial detection and identification of plowed ground signatures

began. By negatively printing the band 5 imagery, we enhanced the

light toned, cleared plowed earth signatures on the original imagery

into dark toned blocks and dots on the negative print (Figure 20).

From this initial step of detection and identification we proceeded

to mosaic fourteen negative prints of Tennessee, Kentucky, Northern
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Figure 20. Agricultural plowing signatures (darkest tones)

in the Sand Mountain, Alabama area of northeastern
Alabama. ERTS-I band 5 negative print. 14 April,

1973. Idno. 1265-15501-5.
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Alabama, and northern Mississippi and to map the areas of dark toned

plowed earth signatures for April and May, 1973. The result was the

map of agricultural regions in Figure 21.

Finally from the point of view of change detection, the multidate

imagery in Figure 22 was mapped and analyzed for landscape change.

This substantiated that plowing patterns could be effectively detected

and monitored over a temporal period and mapped over a spatial

framework.

4.2 INTERPRETATION AND ANALYSIS OF PLOWED EARTH SIGNATURES FROM

ERTS-I IMAGERY

The ERTS image in Figure 20 represents an almost ideal condition

for the detection of plowing signatures. The dark elongated feature

in the southwest corner of the image is Sand Mountain, Alabama, an

agricultural region based upon truck garden vegetables and fruit grown

on sandstone based soils. The plowed ground signatures are the dots

and areas deepest darkest intensity on the negative print.

Perceived as aggregates, the dark tones form a photomorphic region

of similar tones. The interpretive value of the photomorphic region

is that like tones can be assumed to reflect similar landscape

characteristics. In this case the Sand Mountain area forms a most

dramatic photomorphic region which exhibits plowed earth signatures -

surrogates for potential agricultural crop activity. Southeast of

Sand Mountain, additional photomorphic regions of dark tones register

for two agricultural regions in the southeast portion of the image

near Gadsden, Alabama and Rome, Georgia.
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In the western portions of the image beyond Sand Mountain, note

the finger-like extensions of agricultural lands reaching into the

dissected Cumberland Plateau. West and northwest of the Plateau,

the forested area shown in light gray tones, we again see dark

signatures indicating the plowed fields of the Highland Rim and

Plateau of the Barrens.

Darkest tones on the negative print represent the lightest tones

on the original band 5 imagery and both represent land surfaces of

brightest reflectance. For this area of the Southeast, such light

signatures represent cultural landscapes. For the months of April

and May, they represent bare earth. And for rural landscapes they

represent cleared, plowed fields.

4.3 MOSAIC MAPPING OF AGRICULTURAL REGIONS

Using the plowed ground signature as a surrogate for agricultural

crop activity, 14 ERTS band 5 images were mosaiced in negative print

form for the states of Tennessee and Kentucky (Figure 21). Twenty

man hours were required to print and mosaic the imagery, and map the

regions on the basis of photomorphic signatures (i.e., contiguous

areas of dark toned plowing signatures). The speed with which this

effort was accomplished reaffirmed our belief that ERTS was an effective

system with significant cost benefits. The cost of the ERTS imagery

alone would have been $49. By comparison, RB-57 coverage for the same

area would have cost over $150,000. But more important, the time spent

on the project using ERTS imagery only required 20 man hours whereas

with RB-57 imagery, the total time required would have been approximately

20 or more man days.
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Figure 21. Agricultural regions of Tennessee and Kentucky derived from a mosaic of 14
ERTS-I band 5 negative prints. April-May, 1973.
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The interpretative value of any mosaic is that it presents an

even larger perspective and region-wide view than its individual

components, i.e., the single ERTS frames. We are aware of the ERTS

mosaicing efforts of General Electric and commend them on their high

quality products. Such mosaicing may be the solution to producing

statewide data bases for landuse mapping.

Although the mapped product in Figure 21 is from an uncontrolled

mosaic, the visual effect and the interpretive value of the product

justify the experiment.

Beginning in the Southeastern corner of the mosaic below Chattanooga

and east of Huntsville, one can again see the Sand Mountain agricultural

region (1) and lesser regions east of it. Immediately north and west

of Huntsville, a large irregularly shaped plowing area denotes the

southern portion of the Highland Rim in Tennessee (2). The Rim area

is dominated by small farms which for this southern portion signify

active plowing signatures.

Northward, the Highland Rim continues in the subregion known as

the Plateau of the Barrens (3). Although this area, too, has

predominantly small farms, the degree of plowing is somewhat less

which indicates a temporal-spatial difference in the timing of plowing

practices.

West of region 3 in the vicinity of Nashville are light toned

signatures which represent the Nashville Basin, a physiographic region

of limestone soils and a rich agricultural heritage. Note the absence

of dark plowing signatures. The Nashville Basin today is characterized

by a predominance of pasture lands for the grazing of cattle and horses.
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Its past was indeed marked by a rich agricultural dominance based

on plantation crop agriculture, but today the gentleman's form of

agrarian landuse is based on livestock and pasturage for the area.

Region 4 is perhaps the most effective plowing region mapped

from ERTS in this mosaic. Its presence on the ERTS mosaic points to,

the strongest return of the dark toned signatures of plowed fields

for any of the photomorphic regions. The Burley tobacco region of

southern Kentucky is represented here. Small farms, intensive tobacco

cultivation, and a crop calendar of apparent remarkable continuity

identify the area as a significant agriculturally active region.

The final region (5), mapped from the ERTS mosaic, is the soybean

region of western Tennessee. Alluvial soils, level topography, and

a more recent agricultural practice of converting from cotton to

soybeans form the basis of this area of plowed fields.

Comparisons between these photomorphic regions as mapped from

ERTS and as they appear on the agricultural landuse map modified by

James Anderson in the National Atlas reveal a remarkable similarity.7

In some ways, the Anderson map (not shown here) is a "ground truth"

or control test for the mapping of the burley tobacco and soybean

regions. However, the ERTS data were mapped as they appear in

Figure 22 before any consultation of the National Atlas was made.

Thus regions 4 and 5 shown on the ERTS mosaic are the result of an

objective interpretation and mapping effort.
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4.4 AGRICULTURAL LANDSCAPE CHANGE DETECTION FROM ERTS

An analysis of ERTS imagery for two successive dates for adjacent

areas in south central Tennessee and northern Alabama reveals the

capabilities of detecting agricultural landscape change from ERTS

imagery alone. Figure 22 illustrates two negative band 5 prints for

May 4 and May 21, 1973 for the area. The temporal distance is only

one ERTS cycle apart (17 days) yet significant changes can be detected.

In the Muscle Shoals-Florence, Alabama area (1) for the two dates, we

can see a direct transformation from dark plowed earth signatures for

May 4 into a signature of lighter tones for May 21. This represents a

change from plowed field conditions to an initial flourishing or

greening of the spring crops.

Northward in the Lawrenceburg, Tennessee area (2) of the

Highland Rim, the field signatures of light tones for May 4 indicate

a dormant state. Plowing conditions have not yet begun. However, by

May 21 dark tones appear in the same area indicating a freshly plowed

condition.

As indicated by the arrows on the two images, we can thus detect

temporal change between the two dates of May 4 and May 21 in terms

of plowing signature changes. Area 1 changes from plowed to post-plowed

signatures; whereas area 2 changes from pre-plowed to plowed signatures.

Furthermore, a brown wave effect can be detected spatially in a south

to north movement. Unlike a vegetative brown wave, this brown wave

represents the northward migration of plowing practices as a response

to a variable crop and plowing calendar.
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Figure 22. Agricultural landscape change in South Central Tennessee and Northern Alabama.
ERTS- I band 5 negative prints. 4 May 1973 Id.no. 1285-16013-5. 21 May 1973 Id.no.

1302-15554-5.
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4.5 EVALUATION AND POTENTIAL USE OF ERTS FOR AGRICULTURAL REGIONALIZATION

AND CHANGE DETECTION

For an analysis of seasonal vagaries in agricultural landscape

conditions, ERTS offers a remarkable combination of temporal and spatial

change detection capabilities. The analysis of plowing patterns is

perhaps the most significant because, plowed earth signatures are easily

detected on ERTS imagery. Furthermore, the presence of plowed earth

signatures indicates surrogate information for the immediate future

use of lands for crop agriculture. A farming population in this

portion of the Southeastern U.S. simply does not plow the earth and

leave it in a fallow state. Once plowed, the majority of fields are

destined for further agricultural activity, i.e., crop agriculture or

improved pasture. Thus ERTS imagery in a black and white negative form

provides a remarkable capability for the detection, identification,

and mapping of plowed earth signatures as surrogates for active

agricultural landscapes.

The ERTS temporal capability of cyclic observations of every 18

days also becomes significant to the detection of changes in agricultural

land cover. As the landscape changes from a pre-plowed to a plowed

state and on to a post-plowed/crop emergence condition, ERTS imagery

can be used to effectively detect and monitor such land cover changes.

Finally, the use of plowing signatures (dark tones) and the change

detection capability can be used to regionalize areas of like signatures.

Thus, photomorphic regions of agricultural activity can be mapped and

changing areas can be monitored through the exclusive use of ERTS

imagery.
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5.0 THE MAPPING OF FOREST COVER FROM ERTS IMAGERY

Unlike the previous two sections, the forest cover topic is

treated thematically and cartographically but minimally in terms of

landscape change. As an initial experiment in thematic land cover

mapping, the forest cover of Tennessee was chosen as a landscape

element to which ERTS data could be applied. Using 14 ERTS band 5

frames, we proceeded to map general forest cover signatures for each

image. Then by a mosaicing and scale reduction method, forest

signatures were reduced to the map product as shown in Figure 24.

Forest signatures for full foliage periods appear collectively

(deciduous and evergreen) on band 5 imagery as dark relatively uniform

tones. Conversely, non-forested areas appear in lighter tones of

gray to white. Thus the detection and identification as well as

mapping.of forest signatures is facilitated by these extreme contrasts

in signature reflection.

To complete the map in Figure 23 required approximately three

hours of mapping time and with the inclusion of the map the total

man hours was only six hours. Such time efficiency as this can only

lead to a cost benefit ratio of considerable proportions. Compared

to ERTS, an RB-57 high flight data base would have required more than

$150,000 worth of imagery and at least 10 or more man days to complete

the mapping of Tennessee's forest cover.

One might question the value of mapping generalized forest cover

for large areas from ERTS imagery. Despite what is known about our

nation's natural resources, as yet an adequate inventory of forest

reserves has not been fully accomplished.
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Figure 23. General forest cover of Tennessee derived from 12 ERTS-I band 5 positive
transparencies. Various dates between 15 October 1972 and 12 July 1973.
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For example, within TVA, a valley-wide inventory of forest cover

is needed. TVA has a thorough understanding of sampled forest data

on 1/5 acre plots but the region-wide view is missing. Thus, the

ERTS perspective offers a quick and easy avenue to solving the

problem of mapping and inventorying the forest reserves of the

Tennessee Valley Authority region.

5.1 PHENOLOGICAL DETECTION

A most recent preliminary analysis made on February 18, 1974

applies to phenological changes in the forest cover of eastern

Tennessee. On an ERTS color composite dated May 18, 1973, a succession

of a spring "green wave" phenomenon can be detected. In the higher

elevations of the Blue Ridge and Great Smoky Mountains, deciduous

species which have not yet leafed out can be detected and mapped.

Furthermore, the unleafed deciduous can not only be distinguished from

leafed deciduous but more importantly, both can be clearly distinguished

from evergreen species of spruce-fir, and the pine. Although time has

not permitted a more thorough analysis of this phenomenon, its presence

S8
on ERTS imagery provides the forest ecology investigators a temporal

and spatial capability which was unobtainable heretofore.
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6.0 URBAN-SUBURBAN CHANGE ANALYSIS

6,1 INTRODUCTION

The analysis of landscape change in or near urban areas has been

as perplexing as it has been fruitful. Until the launch of ERTS-I,

the efforts of the NASA-ERTS Geography Remote Sensing Project were

focused on the urban-suburban growth areas of Knoxville and West Knox

County. Low altitude aircraft imagery was generated, high altitude

imagery was obtained, and as the initial ERTS imagery began to arrive,

we found that urban landscapes diminished in size, scale, and in

interpretability from the aircraft to satellite data. From the ERTS

perspective the urban scene was amalgamated into almost continuous

tones of gray. Certainly, the spider web of roads and routes leading

from the city could be detected and mapped; but the cell for cell

land units ranging in size from 2-50 acres in stages of significant

landscape change were obscured on the original imagery.

The internal characteristics of the city were obscured to the

point that landuse categories beyond medium and high density built up

could not be easily determined. Contrary to the initial findings of

Dr. Robert Simpson at Dartmouth, we were initially unable to distinguish

industrial/commercial from residential categories. Our present (1974)

internal city analysis continues to experience difficulty in distinguishing

the more detailed aspects of urban landuse categories directly and

exclusively from ERTS imagery.
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6.2 THE DETECTION OF SUBURBAN GROWTH PATTERNS FROM ERTS-I IMAGERY

The multi-stage, multi-scale approach was essential to the

analysis of ERTS imagery for changes in the growth areas of Knoxville

and West Knox County. Paramount to this effort was the use of RB-57

imagery as a map and data base. Just as with the strip mining analysis,

the RB-57 high flight imagery became the comparative data base to

which ERTS imagery was adjusted and compared.

Unlike the mapping of strip mines from ERTS and high flight

imagery, the suburban change detection and mapping was infinitely

more difficult. First, we reprinted both sets of imagery (RB-57

color infrared, and ERTS band 5) into negative prints. Three high flight

images of the Knoxville area were then mosaiced and mounted as a data

and map base. The negative print of ERTS which had been enlarged to

a scale of 1:140,800 was then projected through a vertical projecting

system (Map-O-Graph) and adjusted to the 1:120,000 scale of the

high flight imagery. At this stage the mapping procedure was begun.

A plastic, acetate overlay was placed over the mosaic. Landscape

units which appeared on the ERTS as dark tones but which were absent

on the high flight imagery were outlined on the acetate overlay

(Figure 24).

Several problems resulted from the mapping procedure. Initially

the scale adjustments were extremely unwieldy. Not only were they

difficult to set but were further difficult to maintain over the entire

surface. Aberrations in the lenses of the enlarger and the Map-O-Graph

presented distortions in addition to the ones which were present
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Figure 24. Urban - Suburban landscape change derived from ERTS-I imagery and an RB-57 high

flight data base. Aircraft data: 18 April 1972. ERTS data: 12 July 1973. Id.no.

1354-15431-5.
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in the prints. Perhaps a more serious problem was the difficulty of

identifying the changed areas in terms of their states of change and

landuse characteristics.

The information shown in Figure 24 outlines the areas which

changed from light tones in April, 1972, into dark tones by July,

1973. The tonal changes identify landscape changes but offer little

or no information about the landuse character of the change. The

mapped, outlined areas are represented on ERTS as dark toned features

on the negative print. On the original imagery they appear as light

toned features with very high reflectance characteristics. In either

case, it is the characteristic of tone which is the only signature

of significance. The most serious problem thus encountered is the

answer to the question - What are the varieties of landscape change

represented by the dark toned signatures on the negative prints? With

the strip mines the identification was simple, dark jagged lineations

on a uniform light toned forested background identified as strip mines.

But for the urban-suburban scene dark tones of dots, blocks, squares,

or nearly any geometric shape except linear can mean anything from

bare earth to a full scale and functioning shopping center complete

with shoppers!

Despite the identification problems, the question of urban-

suburban change detection from ERTS is more positive. I am convinced

that changing landscape cells of from 10 acres or more in size can

be detected from ERTS imagery but only if the imagery is enlarged

and compared to a reliable data source - such as aircraft imagery.



90

From the analysis of Figure 24 we can detect several patterns

of landscape change. Note in the western and northern portions of

the map, the clustering of dynamic areas associated with growth along

the interstate routes of 1-40 and 1-75. The changing areas are

represented by a variety of states of change and development. Some

are simply cleared bare earth surfaces prepared for either current

or potential construction. Others are shopping centers, motels, and

automobile dealerships. Further, several areas are construction sites

for apartments and subdivision development. But in every case, the

interpreter cannot identify the state of change or the landuse

category from ERTS imagery alone. The other data sources are essential.

In the far western portion of the map, the construction of the Oak

Ridge-Knoxville highway connector is visible but has not changed (in

terms of paving) since the April, 1972 observation. In the center of

the image, urban renewal work is taking place near the CBD (Central

Business District). To the south of Knoxville, subdivision developments

are continuing to emerge but to a lesser degree than the other northern

and western growth areas.

Figure 25 illustrates the use of the VP-8 image analyzer for

urban landuse and change detection from an ERTS band 5 image. Although

change detection aspects have not been developed for the experiment,

generalized density patterns reveal areas of highest signal returns

which become surrogates for high density settlement. In the upper

part of the image, the cursors (crossed lines) identify the CBD area

of Knoxville. Radiating outward from the central city are corridors
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Figure 25. VP-8 image analyzer video output of the Knoxville
Test Site from an ERTS-I band 5 positive transparency.

Upper monitor enhances areas of high spectral reflectance
for the city. Cursors cross at the CBD. The growth areas
of West Knoxville are in the northwest quadrant of the

image. Lower image has been generated by a normal black
and white monitor. Both images are negative prints.

15 October 1972. Id.no. 1084-15431-5.
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of strip development and settlement with the longest and most active

one extending westward out 1-40 west. The large block in the southwest

quadrant is the McGee-Tyson Airport. Adjacent to the airport are high

density returns indicating Alcoa Aluminum Plants, strip developments

(i.e., new car dealerships, mobile home dealers, motels, etc.), and

the towns of Alcoa, and Maryville, Tennessee.

Immediately north of the CBD are four large areas of relatively

equal size and density oriented in an east-west direction. There are

four industrial parks located in an industrial corridor. These same

patterns can be seen on the negative print of ERTS band 5 in Figure 26

where landuse areas are labelled on the image. The scale is approxi-

mately 1:140,800.



1 -75

I NDUSTR IAL
#4 #

HIGHWAY CONST.

. SHOPPING CENTERS
m

4

1-40

4 4

Figure 26. ERTS-I band 5 negative print of the Knoxville Test Site. Scale is approximately
1:140,000. 12 July 1973. Id.no. 1354-15431-5.
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7.0 THE ANALYSIS OF ERTS IMAGERY FOR CHANGES IN SHORT LIVED LANDSCAPE

PHENOMENAE

7.1 INTRODUCTION

Throughout the course of this investigation, several landscape

elements began to show surficial changes which were related to short

term conditions of precipitation. Three examples which were analyzed

from ERTS data include: (1) the Spring 1973 floods on the Mississippi

River between Cairo, Illinois and Memphis, Tennessee; (2) wetted

vegetation patterns on the windward slopes of the Great Smoky Mountains;

and (3) snow patterns on the southern Appalachians.

7.2 MISSISSIPPI RIVER FLOODS - 1973

Of the short lived phenomenae, the nature of river flooding can

leave its most indelible mark on the lives of the people. During

the spring of 1973, torrential winter and spring rains caused the

Mississippi River and its tributaries to flood to record proportions.

Thousands of acres were covered by flood waters and millions of dollars

in property losses were suffered. To record the disaster by low

altitude aircraft imagery would have been nearly impossible. Even

high flight coverage would have been difficult. However, on three

frames from ERTS the Mississippi River floodplain from above Cairo,

Illinois to as far south as the Arkansas River was covered.

Figure 27 illustrates in a change detection and mapping coverage

the areas affected by the spring floods. The darkest tones represent
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Figure 27. Map of Spring flooding on the Mississippi River between

Cairo, Illinois and Memphis, Tennessee. Derived from 3

ERTS-I band 7 transparencies for each of two dates.
1 October 1972 and 5 May 1973.
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the river system during normal to low water levels as of October 1,

1972. The lighter tones represent the floods on the Mississippi

as of May 5, 1973.

In the upper one third of the map above the Tennessee-Kentucky

border, flood waters appear to be localized on the Mississippi River

immediately above Cairo and just south of the city. The low lying

floodplain areas north of Cairo are restricted in flood to the east

of the main river channel on the Illinois side. Conversely, the

Ohio River shows fewer signs of major flooding because of high bluffs

on both sides of the river. South of Cairo a broad flood area,

representing a major flooded section, appears just north of the

Kentucky-Tennessee border.

Calculations made of the flooded or water covered areas above

Cairo account for more than 400,000 acres (see Procedure below).

The closest outside figure to which we can compare these calculations

is one of 313,000 acres from a portion of same area reported by

8Deutsch, Ruggles, Guss, and Yost. Because the area which we mapped

and enumerated is slightly larger than the one measured by Deutsch

et al., the differences between the acreages of flood affected

land are expected.

The flood affected areas in Tennessee's portion of the Mississippi

River show a remarkable concentration of flooded land in the upper

half of the area above Memphis. This large inundated area represents

the main crest of the Mississippi River flood located in the vicinity

of the Tennessee-Arkansas-Missouri juncture with the main thrust
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or expanse of serious flood conditions extending northward to

southwestern Kentucky. Flooded tributaries such as the Obion,

Forked Deer, and Hatchie Rivers in Tennessee are contributing a

small proportion of the flooding but the crest is related to flooding

conditions which have previously occurred and have collected from

upstream on the Missouri, Ohio, and upper Mississippi River systems.

Correlative evidence of the location of the flood crest from

Deutsche et al. shows that from hydrographic data the all time

high flood crest occurred at St. Louis on April 28, 1973.9 The

ERTS imagery from which our map was derived is dated May 5 and

places the crest at mile 800 or near the Tennessee-Arkansas-Missouri

border approximately 65 miles north of Memphis. According to

hydrographic data, the crest did not reach Memphis until May 8.

The same cresting flood does not reach Vicksburg until May 15.

With such data we can thus be assured that the major crest of flooding

is represented by the large area of flooding in upper west Tennessee

on May 5, 1973. Although comparative data for the acreage in

floods between Cairo and Memphis have not been available, our

calculations show 967,040 acres of inundation for the area including

tributary streams. For the area on the map below Memphis, an

additional 300,000 acres can be added. The total area of flood

inundation for the entire mapped area (three frames of ERTS imagery)

accounts for approximately 1.7 million acres.



98

Procedure

The map in figure 27 was prepared from 6 frames of ERTS-I

9 x 9 (1:1 million) imagery. Three frames of band 7 for October 1,

1972 were used to prepare the preflood map data which appears in

black on the map and three frames of band 7 imagery for May 5 were

used to map the corresponding flood conditions shown in gray.

Figure 28 illustrates the six frames for comparison. Although the

frames in figure 28 are 70 mm chips, the frames for the original

mapping medium were 9 x 9 1:1 million scale contact prints. The

map was prepared by tracing the hydrologic conditions shown in black

tones onto a stable transparent material. The preflood October 1

data were mapped first followed by the shading of flood data from

the May 5 imagery on the same map. For calculating flooded acreage

data, a gridded overlay with 1/10" cells was placed over the

1:1 million scale map and cells and portions of cells which covered

inundated areas on the map were counted. With each cell calculated

at 2.53 square miles the area covered by water equals 731.8 square

miles or 468,352 acres. These are not firm figures as some degree

of error is expected in the estimation of areas for partially

covered grid cells. Furthermore, such calculations were made from

the drafted map after flood data were traced from ERTS imagery to

the map. Each step in data transference thus provided another

element of error.
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Figure 28. Comparisons between pre-flood conditions and flooded con-

conditions on the Mississippi River between Cairo,Ill. and

Memphis, Tenn. ERTS-I band 7 positive prints.
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Evaluation

The synoptic and temporal capabilities of ERTS-I have served

us well in this endeavor of flood mapping. Without the temporal

coverage, the preflood and flood parameters could not have been

determined. But more important is the speed with which the

three frame sequence was made. ERTS required 1 minute 17 seconds

to record this short-lived phenomenon of regional flooding. Water

fluctuations, the filling of lowlands, the draining of others,

would require only a few hours or days at most to change the

complexion of the flood. But ERTS gives us a "stop watch" like

static view of the scene. Had high altitude aircraft been used,

many flying hours would have been required to cover the Mississippi

floodplain and its flood. Small detailed views would have been

obtained but the aircraft coverage would have lacked a synoptic

overview of the areas in crest flood conditions, the areas which

had just experienced the passage of the crest, and the predictive

coverage of unfortunate areas about to receive the flood crest.

The Mississippi River floods were a regional problem, a short-lived

phenomenon, and ERTS provided a quick-look synoptic perspective

necessary to analyze and evaluate the damaged region.

Cost benefits are always difficult to assess but had we wished

to cover the entire Mississippi flood region to the Gulf of Mexico,

only seven frames would have been required at a cost of $1.75 per

print from the USGS-EROS Data Center at Sioux Falls, S.D. High

altitude aircraft imagery from the Data Center would have cost
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$3000+ and would not have covered the same expanse of coverage

which would have been provided by $12.25 worth of ERTS imagery.

7.3 PRECIPITATION PATTERNS ON THE GREAT SMOKY MOUNTAINS, TENNESSEE/

NORTH CAROLINA

Additional applications toward earth resources management

problems involved the quick-look analyses of precipitation patterns

on the Great Smoky Mountains and Blue Ridge areas of the Southern

Appalachians.

The Great Smoky Mountains represent a region of cyclic, seasonal

change for which natural and not man-made causes predominate.

Figure 29, a band 7 positive print, shows a large dark toned area

on the western, windward, slopes of the Smokies. The day preceding

this ERTS observation, a frontal storm system deposited 2"-3"

of rainfall on the windward slopes. By comparison, Knoxville

located downslope in the Valley received 1.12" of rainfall. The

wetted vegetated surface shown here in dark tones was sufficiently

wet to register in tones similar to the surrounding streams and TVA

reservoirs to the north and west. The satellite monitoring of a

watershed such as this has application toward water resources,

flood prediction, and a host of other water management problems.

Snow cover on the Southern Appalachians of North Carolina and

Tennessee is not an uncommon occurrence. However, infrequent snows

of undetermined depth and areal coverage strike the region every

winter. Snow cover rarely remains long enough for multiple snows
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Figure 29. Wetted Spruce-Fir vegetation on the windward slopes
of the Great Smoky Mountains, Tennessee-North Caro-
lina. ERTS-I band 7 positive print. 15 October 1972.
Id. no. 1084-15431-7.
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to accumulate so that each snow is usually a distinct and separate

occurrence. Although not every snow can be expected to be recorded

by ERTS on its 18 day cycle, the use of ERTS as a weather monitoring

device does have application. For the winter of 1972-1973, four

snow cover periods were recorded by ERTS observations on the Southern

Appalachians. Figure 30 illustrates the pattern of snow cover in

the area for February 17, 1973. The pattern illustrates the west

to east progression of the frontal system which precipitated the

snow. The eastern front of the Blue Ridge Mountains and upper Piedmont

area in North Carolina show a striking absence of snow as indicated

by the areas of dark tones. The remaining areas of white tones

adequately show the regional distribution of snow cover for the

photo region.

Evaluation

ERTS continues to provide operational capability in monitoring

landscape change even in the category of short lived phenomenae.

ERTS-I band 7 imagery is significantly effective in detecting and

monitoring surface hydrologic features whether they are permanent,

lakes or streams, flooded areas, or temporarily moisture covered

vegetation surfaces. ERTS-I is a timely system for monitoring

watersheds such as in the Southern Appalachians where heavy rainfall

areas can be monitored and where snow cover patterns can be mapped.

The utility of such monitoring has application to storm caused

landslides and local floods as well as applications to recreational

landuseplanning for winter sports where data for snow cover patterns

and north facing snow covered slopes are essential.
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Figure 30. Snow cover on the Southern Appalachians, Tennessee-

North Carolina. ERTS-I band 7 positive print.

17 February 1973. Id.no. 1209-15380-7
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8.0 SUMMARY AND CONCLUSIONS

ERTS-I has proven to be an effective earth-orbiting monitor of

landscape change. Its regional coverage for large areal monitoring

has been effective for the detection and mapping of agricultural

plowing regions, for general forest cover mapping, for flood mapping,

and for short-lived precipitation mapping patterns. We have been

S indeed pleased with this capability and congratulate NASA for its

choice of altitude for the satellite to provide such regional coverage.

Paramount to the entire study has been the temporal coverage

provided by ERTS. Without the cyclic coverage on an 18 day basis,

temporal coverage would have been inadequate for the detection and

mapping of strip mining landscape change, the analysis of agricultural

landscape change based on plowing patterns, the analysis of urban-

suburban growth changes, and the mapping of the Mississippi River

floods.

Cost benefits from ERTS are unquestionably superior to aircraft

systems in regard to large regional coverage and cyclic temporal

parameters. For the analysis of landscape change in large regions

such as statewide areas or even areas of 10,000 square miles,

ERTS is of cost benefit consideration. Not only does the cost of

imagery favor ERTS but the reduction of man-hours in our project

using ERTS have been in the magnitude of 1:10. Thus because of the
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cover, or inundated floodplains is estimated at a minimum of one

man hour for each man day. We have found that maximum ratios

may be estimated as high as one man hour for each 10 man days.

As for the future use of ERTS systems, I have the highest regard

and recommendation for the system in monitoring landscape change on

a regional scale. Worldwide, operational applications of ERTS

to the analysis of earth resources and landscape change are not

only possible but should prove to be significant in the future

toward the understanding of man's role in changing the face of

the earth.
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